

- 1. Let $\mathbf{r}(t) = \left\langle \frac{\sin t}{t}, e^{\cos t}, \sqrt{4 t^2} \right\rangle$
 - (a) Find the domain of ${\bf r}$

(b) Find $\lim_{t\to 0} \mathbf{r}(t)$

(c) Find $\mathbf{r}'(t)$

2. Find a vector function that represents the curve on intersection of

$$x^2 + y^2 + z = 4$$
 and $x^2 + y^2 = 9$

3. Reparametrize $\mathbf{r}(t) = \langle e^t, \cos e^t, \sin e^t \rangle$ with respect to arc length measured from t = 0 in the direction of increasing t.

4. Find the curvature of the ellipse $x = 3\cos t$, $y = 4\sin t$ at the points (3,0) and (0,4).

5. A particle starts at the origin with initial velocity $\mathbf{i}-\mathbf{j}+3\mathbf{k}$ and its acceleration is $\mathbf{a}(t) = \langle 6t, 12t^2, -6t \rangle$. Find its position function and its speed function.