HOMEWORK SOLUTIONS Section 16.9 - 1, 3, 6, 9, 12, 13, 23

1. div $\mathbf{F} = 3 + x + 2x = 3 + 3x$, so

 $\iiint_E \operatorname{div} \mathbf{F} \, dV = \int_0^1 \int_0^1 \int_0^1 (3x+3) \, dx \, dy \, dz = \frac{9}{2}$ (notice the triple integral is three times the volume of the cube plus three times \overline{x}).

To compute $\iint_S \mathbf{F} \cdot d\mathbf{S}$, on

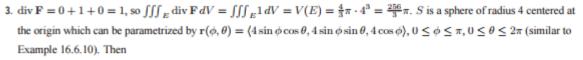
$$S_1$$
: $\mathbf{n} = \mathbf{i}$, $\mathbf{F} = 3\mathbf{i} + y\mathbf{j} + 2z\mathbf{k}$, and $\iint_{S_1} \mathbf{F} \cdot d\mathbf{S} = \iint_{S_1} 3 dS = 3$;

$$S_2$$
: $\mathbf{F} = 3x \mathbf{i} + x \mathbf{j} + 2xz \mathbf{k}$, $\mathbf{n} = \mathbf{j}$ and $\iint_{S_2} \mathbf{F} \cdot d\mathbf{S} = \iint_{S_2} x dS = \frac{1}{2}$;

$$S_3$$
: $\mathbf{F} = 3x \mathbf{i} + xy \mathbf{j} + 2x \mathbf{k}$, $\mathbf{n} = \mathbf{k}$ and $\iint_{S_3} \mathbf{F} \cdot d\mathbf{S} = \iint_{S_3} 2x dS = 1$;

$$S_4$$
: $\mathbf{F} = \mathbf{0}$, $\iint_{S_4} \mathbf{F} \cdot d\mathbf{S} = 0$; S_5 : $\mathbf{F} = 3x \mathbf{i} + 2x \mathbf{k}$, $\mathbf{n} = -\mathbf{j}$ and $\iint_{S_5} \mathbf{F} \cdot d\mathbf{S} = \iint_{S_5} \mathbf{0} \, dS = 0$;

$$S_6$$
: $\mathbf{F} = 3x \mathbf{i} + xy \mathbf{j}$, $\mathbf{n} = -\mathbf{k}$ and $\iint_{S_a} \mathbf{F} \cdot d\mathbf{S} = \iint_{S_a} 0 \, dS = 0$. Thus $\iint_S \mathbf{F} \cdot d\mathbf{S} = \frac{9}{2}$.



$$\mathbf{r}_{\phi} \times \mathbf{r}_{\theta} = \langle 4 \cos \phi \cos \theta, 4 \cos \phi \sin \theta, -4 \sin \phi \rangle \times \langle -4 \sin \phi \sin \theta, 4 \sin \phi \cos \theta, 0 \rangle$$

 $= \langle 16 \sin^2 \phi \cos \theta, 16 \sin^2 \phi \sin \theta, 16 \cos \phi \sin \phi \rangle$

and $\mathbf{F}(\mathbf{r}(\phi, \theta)) = \langle 4\cos\phi, 4\sin\phi\sin\theta, 4\sin\phi\cos\theta \rangle$. Thus

 $\mathbf{F} \cdot (\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}) = 64 \cos \phi \sin^2 \phi \cos \theta + 64 \sin^3 \phi \sin^2 \theta + 64 \cos \phi \sin^2 \phi \cos \theta = 128 \cos \phi \sin^2 \phi \cos \theta + 64 \sin^3 \phi \sin^2 \theta$ and

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{D} \mathbf{F} \cdot (\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}) dA = \int_{0}^{2\pi} \int_{0}^{\pi} (128 \cos \phi \sin^{2} \phi \cos \theta + 64 \sin^{3} \phi \sin^{2} \theta) d\phi d\theta$$

$$= \int_{0}^{2\pi} \left[\frac{128}{3} \sin^{3} \phi \cos \theta + 64 \left(-\frac{1}{3} (2 + \sin^{2} \phi) \cos \phi \right) \sin^{2} \theta \right]_{\phi=0}^{\phi=\pi} d\theta$$

$$= \int_{0}^{2\pi} \frac{256}{3} \sin^{2} \theta d\theta = \frac{256}{3} \left[\frac{1}{2} \theta - \frac{1}{4} \sin 2\theta \right]_{0}^{2\pi} = \frac{256}{3} \pi$$

6. div $\mathbf{F} = \frac{\partial}{\partial x}(x^2yz) + \frac{\partial}{\partial y}(xy^2z) + \frac{\partial}{\partial z}(xyz^2) = 2xyz + 2xyz + 2xyz = 6xyz$, so by the Divergence Theorem,

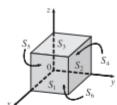
$$\begin{split} \iint_{S} \mathbf{F} \cdot d\mathbf{S} &= \iiint_{E} \operatorname{div} \mathbf{F} \, dV = \int_{0}^{a} \int_{0}^{b} \int_{0}^{c} 6xyz \, dz \, dy \, dx = 6 \int_{0}^{a} x \, dx \, \int_{0}^{b} y \, dy \, \int_{0}^{c} z \, dz \\ &= 6 \left[\frac{1}{2} x^{2} \right]_{0}^{a} \left[\frac{1}{2} y^{2} \right]_{0}^{b} \left[\frac{1}{2} z^{2} \right]_{0}^{c} = 6 \left(\frac{1}{2} a^{2} \right) \left(\frac{1}{2} b^{2} \right) \left(\frac{1}{2} c^{2} \right) = \frac{3}{4} a^{2} b^{2} c^{2} \end{split}$$

9. div $\mathbf{F} = 2x \sin y - x \sin y - x \sin y = 0$, so by the Divergence Theorem, $\iint_S \mathbf{F} \cdot d\mathbf{S} = \iiint_E 0 \, dV = 0$.

12. div $\mathbf{F} = 4x^3 + 4xy^2$ so

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iiint_{E} 4x(x^{2} + y^{2}) dV = \int_{0}^{2\pi} \int_{0}^{1} \int_{0}^{r \cos \theta + 2} (4r^{3} \cos \theta) r dz dr d\theta$$

$$= \int_{0}^{2\pi} \int_{0}^{1} (4r^{5} \cos^{2} \theta + 8r^{4} \cos \theta) dr d\theta = \int_{0}^{2\pi} (\frac{2}{3} \cos^{2} \theta + \frac{8}{5} \cos \theta) d\theta = \frac{2}{3}\pi$$



13.
$$\mathbf{F}(x,y,z) = x\sqrt{x^2 + y^2 + z^2} \,\mathbf{i} + y\sqrt{x^2 + y^2 + z^2} \,\mathbf{j} + z\sqrt{x^2 + y^2 + z^2} \,\mathbf{k}, \text{ so}$$

$$\operatorname{div} \mathbf{F} = x \cdot \frac{1}{2}(x^2 + y^2 + z^2)^{-1/2}(2x) + (x^2 + y^2 + z^2)^{1/2} + y \cdot \frac{1}{2}(x^2 + y^2 + z^2)^{-1/2}(2y) + (x^2 + y^2 + z^2)^{1/2} + z \cdot \frac{1}{2}(x^2 + y^2 + z^2)^{-1/2}(2z) + (x^2 + y^2 + z^2)^{1/2}$$

$$= (x^2 + y^2 + z^2)^{-1/2} \left[x^2 + (x^2 + y^2 + z^2) + y^2 + (x^2 + y^2 + z^2) + z^2 + (x^2 + y^2 + z^2) \right]$$

$$= \frac{4(x^2 + y^2 + z^2)}{\sqrt{x^2 + y^2 + z^2}} = 4\sqrt{x^2 + y^2 + z^2}.$$

Then
$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iiint_{E} 4\sqrt{x^{2} + y^{2} + z^{2}} dV = \int_{0}^{\pi/2} \int_{0}^{2\pi} \int_{0}^{1} 4\sqrt{\rho^{2}} \cdot \rho^{2} \sin \phi \, d\rho \, d\theta \, d\phi$$
$$= \int_{0}^{\pi/2} \sin \phi \, d\phi \int_{0}^{2\pi} d\theta \int_{0}^{1} 4\rho^{3} \, d\rho = [-\cos \phi]_{0}^{\pi/2} [\theta]_{0}^{2\pi} [\rho^{4}]_{0}^{1} = (1)(2\pi)(1) = 2\pi$$

23. Since
$$\frac{\mathbf{x}}{|\mathbf{x}|^3} = \frac{x\,\mathbf{i} + y\,\mathbf{j} + z\,\mathbf{k}}{(x^2 + y^2 + z^2)^{3/2}}$$
 and $\frac{\partial}{\partial x} \left(\frac{x}{(x^2 + y^2 + z^2)^{3/2}} \right) = \frac{(x^2 + y^2 + z^2) - 3x^2}{(x^2 + y^2 + z^2)^{5/2}}$ with similar expressions for $\frac{\partial}{\partial y} \left(\frac{y}{(x^2 + y^2 + z^2)^{3/2}} \right)$ and $\frac{\partial}{\partial z} \left(\frac{z}{(x^2 + y^2 + z^2)^{3/2}} \right)$, we have
$$\operatorname{div} \left(\frac{\mathbf{x}}{|\mathbf{x}|^3} \right) = \frac{3(x^2 + y^2 + z^2) - 3(x^2 + y^2 + z^2)}{(x^2 + y^2 + z^2)^{5/2}} = 0$$
, except at $(0, 0, 0)$ where it is undefined.