HOMEWORK SOLUTIONS MULTIVARIABLE CALCULUS

Section 15.10 - 3, 5, 7, 13, 15, 19, 23
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7. The transformation maps the boundary of 5 to the boundary of the image R, so we first look at side 51 in the wo-plane. 51 is
described by v =0,0 S u < 3,502 =2u+ 3v = 2uand y = uw — v = u. Eliminating u, we have x =2y, 0 < & < 6. Sz i
the line segmentu =3, 0 < v <2 sor=643vandy=3—v. Thenv =3 -y = z=064+3{3—-y)=15- 13y,
G<e=12 S;isthelinesegment v =20 < u <3 sor=2utbandy =u—-2,givingu =y +2 = ==2y4+10,
6 < x <12 Finally, Sq isthe segmentu = 0,0 < v L2, sor =Jvandy = =v = x==3y,0 <z < 6. The image of
set 5 is the region A shown in the zy-plane, a parallelogram bounded by these four segments.
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123. H is a portion of an annular region (see the figure) that is easily described in polar coordinates as
A={(rt)|1<r= V2,058 < rr,.-’z}. If we converted a double integral over R to polar coordinates the resulting region
of integration is a rectangle (in the r&-plane), so we can create a transformation 7" here by letting « play the role of r and v the

role of . Thus T is defined by = = ucos v, y = usinv and 7' maps the rectangle S = {(u.v) [ 1 € u < VZ0<v < =2}

in the ww-plane to /7 in the cy-plane.
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15. =3and x — 3y = (2u + v) = 3(u 4+ 2¢) = —u — 5v. To find the region 5 in the we-plane that

corresponds to /& we first find the corresponding boundary under the given transformation. The line through (0, 0) and (2,1) is
y = frwhich is the image of u + 2v = 1(Zu+v) = v =10 the line through (2, 1) and (1,2} is  + y = 3 which is the
image of (2u 4+ v) 4+ (u+ 20) =3 = w4 v = 1; the line through (0.0) and (1, 2) is y = 2 which is the image of

ut2v=2(Zu+4+v) = u=0 ThusSisthemangle ) <v<1—=wu,0<u =< 1 inthe uv-plane and
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v = 3u, and the hyperbolas xy = 1, xy = 3 are the images of the lines u = 1 and u = 3 respectively. Thus
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and K is the image of the rectangle enclosed by the lines u = 0, u =4, v = 1, and v = & Thus
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