- 3. f(x, y) = x² + y², g(x, y) = xy = 1, and ∇f = λ∇g ⇒ ⟨2x, 2y⟩ = ⟨λy, λx⟩, so 2x = λy, 2y = λx, and xy = 1.
 From the last equation, x ≠ 0 and y ≠ 0, so 2x = λy ⇒ λ = 2x/y. Substituting, we have 2y = (2x/y) x ⇒ y² = x² ⇒ y = ±x. But xy = 1, so x = y = ±1 and the possible points for the extreme values of f are (1, 1) and (-1, -1). Here there is no maximum value, since the constraint xy = 1 allows x or y to become arbitrarily large, and hence f(x, y) = x² + y² can be made arbitrarily large. The minimum value is f(1, 1) = f(-1, -1) = 2.
- b. f(x,y) = e^{xy}, g(x,y) = x³ + y³ = 16, and ∇f = λ∇g ⇒ ⟨ye^{xy}, xe^{xy}⟩ = ⟨3λx², 3λy²⟩, so ye^{xy} = 3λx² and xe^{xy} = 3λy². Note that x = 0 ⇔ y = 0 which contradicts x³ + y³ = 16, so we may assume x ≠ 0, y ≠ 0, and then λ = ye^{xy}/(3x²) = xe^{xy}/(3y²) ⇒ x³ = y³ ⇒ x = y. But x³ + y³ = 16, so 2x³ = 16 ⇒ x = 2 = y. Here there is no minimum value, since we can choose points satisfying the constraint x³ + y³ = 16 that make f(x, y) = e^{xy} arbitrarily close to 0 (but never equal to 0). The maximum value is f(2, 2) = e⁴.
- 9. f(x, y, z) = xyz, g(x, y, z) = x² + 2y² + 3z² = 6. ∇f = λ∇g ⇒ ⟨yz, xz, xy⟩ = λ ⟨2x, 4y, 6z⟩. If any of x, y, or z is zero then x = y = z = 0 which contradicts x² + 2y² + 3z² = 6. Then λ = (yz)/(2x) = (xz)/(4y) = (xy)/(6z) or x² = 2y² and z² = ²/₃y². Thus x² + 2y² + 3z² = 6 implies 6y² = 6 or y = ±1. Then the possible points are (√2, ±1, √²/₃), (√2, ±1, -√²/₃), (-√2, ±1, √²/₃), (-√2, ±1, -√²/₃). The maximum value of f on the ellipsoid is ²/_{√3}, occurring when all coordinates are positive or exactly two are negative and the minimum is -²/_{√3} occurring when 1 or 3 of the coordinates are negative.
- 21. $f(x, y) = e^{-xy}$. For the interior of the region, we find the critical points: $f_x = -ye^{-xy}$, $f_y = -xe^{-xy}$, so the only critical point is (0, 0), and f(0, 0) = 1. For the boundary, we use Lagrange multipliers. $g(x, y) = x^2 + 4y^2 = 1 \Rightarrow \lambda \nabla g = \langle 2\lambda x, 8\lambda y \rangle$, so setting $\nabla f = \lambda \nabla g$ we get $-ye^{-xy} = 2\lambda x$ and $-xe^{-xy} = 8\lambda y$. The first of these gives $e^{-xy} = -2\lambda x/y$, and then the second gives $-x(-2\lambda x/y) = 8\lambda y \Rightarrow x^2 = 4y^2$. Solving this last equation with the constraint $x^2 + 4y^2 = 1$ gives $x = \pm \frac{1}{\sqrt{2}}$ and $y = \pm \frac{1}{2\sqrt{2}}$. Now $f\left(\pm \frac{1}{\sqrt{2}}, \pm \frac{1}{2\sqrt{2}}\right) = e^{1/4} \approx 1.284$ and $f\left(\pm \frac{1}{\sqrt{2}}, \pm \frac{1}{2\sqrt{2}}\right) = e^{-1/4} \approx 0.779$. The former are the maxima on the region and the latter are the minima.
- 27. Let the sides of the rectangle be x and y. Then f(x, y) = xy, g(x, y) = 2x + 2y = p ⇒ ∇f(x, y) = ⟨y, x⟩, λ∇g = ⟨2λ, 2λ⟩. Then λ = ½y = ½x implies x = y and the rectangle with maximum area is a square with side length ¼p.
- 30. The distance from (0, 1, 1) to a point (x, y, z) on the plane is d = √x² + (y 1)² + (z 1)², so we minimize d² = f(x, y, z) = x² + (y 1)² + (z 1)² subject to the constraint that (x, y, z) lies on the plane x 2y + 3z = 6, that is, g(x, y, z) = x 2y + 3z = 6. Then ∇f = λ∇g ⇒ ⟨2x, 2(y 1), 2(z 1)⟩ = ⟨λ, -2λ, 3λ⟩, so x = λ/2, y = 1 λ, z = (3λ + 2)/2. Substituting into the constraint equation gives λ/2 2(1 λ) + 3 ⋅ 3λ + 2/2 = 6 ⇒ λ = 5/7, so x = 5/14, y = 2/7, and z = 29/14. This must correspond to a minimum, so the point on the plane closest to the point (0, 1, 1) is (5/14, 2/7, 14/24).

37. f(x, y, z) = xyz, $g(x, y, z) = x + 2y + 3z = 6 \Rightarrow \nabla f = \langle yz, xz, xy \rangle = \lambda \nabla g = \langle \lambda, 2\lambda, 3\lambda \rangle$. Then $\lambda = yz = \frac{1}{2}xz = \frac{1}{3}xy$ implies x = 2y, $z = \frac{2}{3}y$. But 2y + 2y + 2y = 6 so y = 1, x = 2, $z = \frac{2}{3}$ and the volume is $V = \frac{4}{3}$.