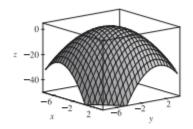
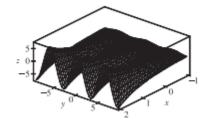
- (a) First we compute D(1,1) = f_{xx}(1,1) f_{yy}(1,1) [f_{xy}(1,1)]² = (4)(2) (1)² = 7. Since D(1,1) > 0 and f_{xx}(1,1) > 0, f has a local minimum at (1,1) by the Second Derivatives Test.
 - (b) $D(1,1) = f_{xx}(1,1) f_{yy}(1,1) [f_{xy}(1,1)]^2 = (4)(2) (3)^2 = -1$. Since D(1,1) < 0, f has a saddle point at (1,1) by the Second Derivatives Test.
- 6. $f(x,y) = xy 2x 2y x^2 y^2 \implies f_x = y 2 2x$, $f_y = x 2 2y$, $f_{xx} = -2$, $f_{xy} = 1$, $f_{yy} = -2$. Then $f_x = 0$ implies y = 2x + 2, and substitution into $f_y = 0$ gives $x 2 2(2x + 2) = 0 \implies -3x = 6 \implies x = -2$. Then y = -2 and the only critical point is (-2, -2). $D(x, y) = f_{xx}f_{yy} (f_{xy})^2 = (-2)(-2) 1^2 = 3$, and since D(-2, -2) = 3 > 0 and $f_{xx}(-2, -2) = -2 < 0$, f(-2, -2) = 4 is a local maximum by the Second Derivatives Test.



13. $f(x,y) = e^x \cos y \implies f_x = e^x \cos y$, $f_y = -e^x \sin y$. Now $f_x = 0$ implies $\cos y = 0$ or $y = \frac{\pi}{2} + n\pi$ for n an integer. But $\sin(\frac{\pi}{2} + n\pi) \neq 0$, so there are no critical points.



18. $f(x,y) = \sin x \sin y \implies f_x = \cos x \sin y$, $f_y = \sin x \cos y$, $f_{xx} = -\sin x \sin y$, $f_{xy} = \cos x \cos y$, $f_{yy} = -\sin x \sin y$. Here we have $-\pi < x < \pi$ and $-\pi < y < \pi$, so $f_x = 0$ implies $\cos x = 0$ or $\sin y = 0$. If $\cos x = 0$ then $x = -\frac{\pi}{2}$ or $\frac{\pi}{2}$, and if $\sin y = 0$ then y = 0. Substituting $x = \pm \frac{\pi}{2}$ into $f_y = 0$ gives $\cos y = 0 \implies y = -\frac{\pi}{2}$ or $\frac{\pi}{2}$, and

substituting y=0 into $f_y=0$ gives $\sin x=0$ \Rightarrow x=0. Thus the critical points are $\left(-\frac{\pi}{2},\pm\frac{\pi}{2}\right),\left(\frac{\pi}{2},\pm\frac{\pi}{2}\right)$, and (0,0).

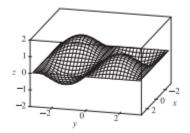
$$D(0,0) = -1 < 0$$
 so $(0,0)$ is a saddle point.

$$D(-\frac{\pi}{2}, \pm \frac{\pi}{2}) = D(\frac{\pi}{2}, \pm \frac{\pi}{2}) = 1 > 0$$
 and

$$f_{xx}\left(-\frac{\pi}{2}, -\frac{\pi}{2}\right) = f_{xx}\left(\frac{\pi}{2}, \frac{\pi}{2}\right) = -1 < 0$$
 while

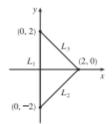
$$f_{xx}\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) = f_{xx}\left(\frac{\pi}{2}, -\frac{\pi}{2}\right) = 1 > 0$$
, so $f\left(-\frac{\pi}{2}, -\frac{\pi}{2}\right) = f\left(\frac{\pi}{2}, \frac{\pi}{2}\right) = 1$

are local maxima and $f\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) = f\left(\frac{\pi}{2}, -\frac{\pi}{2}\right) = 1$ are local minima.

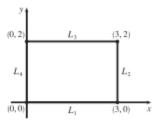


29. Since f is a polynomial it is continuous on D, so an absolute maximum and minimum exist. Here f_x = 2x - 2, f_y = 2y, and setting f_x = f_y = 0 gives (1,0) as the only critical point (which is inside D), where f(1,0) = -1. Along L₁: x = 0 and f(0,y) = y² for -2 ≤ y ≤ 2, a quadratic function which attains its minimum at y = 0, where f(0,0) = 0, and its maximum at y = ±2, where f(0,±2) = 4. Along L₂: y = x - 2 for 0 ≤ x ≤ 2, and f(x,x-2) = 2x² - 6x + 4 = 2(x - 3/2)² - 1/2, a quadratic which attains its minimum at x = 3/2, where f(3/2, -1/2) = -1/2, and its maximum at x = 0, where f(0,-2) = 4.

Along L_3 : y=2-x for $0 \le x \le 2$, and $f(x,2-x)=2x^2-6x+4=2\big(x-\frac{3}{2}\big)^2-\frac{1}{2}$, a quadratic which attains its minimum at $x=\frac{3}{2}$, where $f\big(\frac{3}{2},\frac{1}{2}\big)=-\frac{1}{2}$, and its maximum at x=0, where f(0,2)=4. Thus the absolute maximum of f on D is $f(0,\pm 2)=4$ and the absolute minimum is f(1,0)=-1.



33. $f(x,y) = x^4 + y^4 - 4xy + 2$ is a polynomial and hence continuous on D, so it has an absolute maximum and minimum on D. $f_x(x,y) = 4x^3 - 4y$ and $f_y(x,y) = 4y^3 - 4x$; then $f_x = 0$ implies $y = x^3$, and substitution into $f_y = 0 \implies x = y^3$ gives $x^9 - x = 0 \implies x(x^8 - 1) = 0 \implies x = 0$ or $x = \pm 1$. Thus the critical points are (0,0), (1,1), and (-1,-1), but only (1,1) with f(1,1) = 0 is inside D. On L_1 : y = 0, $f(x,0) = x^4 + 2$,



 $0 \le x \le 3$, a polynomial in x which attains its maximum at x=3, f(3,0)=83, and its minimum at x=0, f(0,0)=2. On L_2 : x=3, $f(3,y)=y^4-12y+83$, $0 \le y \le 2$, a polynomial in y which attains its minimum at $y=\sqrt[3]{3}$, $f\left(3,\sqrt[3]{3}\right)=83-9\sqrt[3]{3}\approx 70.0$, and its maximum at y=0, f(3,0)=83.

On L_3 : y=2, $f(x,2)=x^4-8x+18$, $0 \le x \le 3$, a polynomial in x which attains its minimum at $x=\sqrt[3]{2}$, $f\left(\sqrt[3]{2},2\right)=18-6\sqrt[3]{2}\approx 10.4$, and its maximum at x=3, f(3,2)=75. On L_4 : x=0, $f(0,y)=y^4+2$, $0 \le y \le 2$, a polynomial in y which attains its maximum at y=2, f(0,2)=18, and its minimum at y=0, f(0,0)=2. Thus the absolute maximum of f on D is f(3,0)=83 and the absolute minimum is f(1,1)=0.

40. Here the distance d from a point on the plane to the point (0,1,1) is $d=\sqrt{x^2+(y-1)^2+(z-1)^2}$, where $z=2-\frac{1}{3}x+\frac{2}{3}y$. We can minimize $d^2=f(x,y)=x^2+(y-1)^2+\left(1-\frac{1}{3}x+\frac{2}{3}y\right)^2$, so $f_x(x,y)=2x+2\left(1-\frac{1}{3}x+\frac{2}{3}y\right)\left(-\frac{1}{3}\right)=\frac{20}{9}x-\frac{4}{9}y-\frac{2}{3}$ and $f_y(x,y)=2(y-1)+2\left(1-\frac{1}{3}x+\frac{2}{3}y\right)\left(\frac{2}{3}\right)=-\frac{4}{9}x+\frac{26}{9}y-\frac{2}{3}$. Solving $\frac{20}{9}x-\frac{4}{9}y-\frac{2}{3}=0$ and $-\frac{4}{9}x+\frac{26}{9}y-\frac{2}{3}=0$ simultaneously gives $x=\frac{5}{14}$ and $y=\frac{2}{7}$, so the only critical point is $\left(\frac{5}{14},\frac{2}{7}\right)$.

This point must correspond to the minimum distance, so the point on the plane closest to (0, 1, 1) is $(\frac{5}{14}, \frac{2}{7}, \frac{29}{14})$.

- 43. x + y + z = 100, so maximize f(x, y) = xy(100 x y). $f_x = 100y 2xy y^2$, $f_y = 100x x^2 2xy$, $f_{xx} = -2y$, $f_{yy} = -2x$, $f_{xy} = 100 2x 2y$. Then $f_x = 0$ implies y = 0 or y = 100 2x. Substituting y = 0 into $f_y = 0$ gives x = 0 or x = 100 and substituting y = 100 2x into $f_y = 0$ gives $3x^2 100x = 0$ so x = 0 or $\frac{100}{3}$. Thus the critical points are (0,0), (100,0), (0,100) and $(\frac{100}{3},\frac{100}{3})$. $D(0,0) = D(100,0) = D(0,100) = -10,000 \text{ while } D(\frac{100}{3},\frac{100}{3}) = \frac{10,000}{3} \text{ and } f_{xx}(\frac{100}{3},\frac{100}{3}) = -\frac{200}{3} < 0$. Thus (0,0), (100,0) and (0,100) are saddle points whereas $f(\frac{100}{3},\frac{100}{3})$ is a local maximum. Thus the numbers are $x = y = z = \frac{100}{3}$.
- 51. Let the dimensions be x, y and z, then minimize xy + 2(xz + yz) if $xyz = 32,000 \text{ cm}^3$. Then $f(x,y) = xy + [64,000(x+y)/xy] = xy + 64,000(x^{-1} + y^{-1})$, $f_x = y 64,000x^{-2}$, $f_y = x 64,000y^{-2}$. And $f_x = 0$ implies $y = 64,000/x^2$; substituting into $f_y = 0$ implies $x^3 = 64,000$ or x = 40 and then y = 40. Now $D(x,y) = [(2)(64,000)]^2x^{-3}y^{-3} 1 > 0$ for (40,40) and $f_{xx}(40,40) > 0$ so this is indeed a minimum. Thus the dimensions of the box are x = y = 40 cm, z = 20 cm.