HOMEWORK SOLUTIONS MULTIVARIABLE CALCULUS
Section 14.2 - 7, 11, 16, 17, 26, 29, 34, 37

T flzy)= .cé - ,;’Iz is a rational function and hence continuous on iis domain.
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26, Bz, y) = g(flz.9)) = m +In (ﬁ) [ is a rational function, so it is continuous on its domain. Because

1 4 =*y* = 0, the domain of [ is B*, so f is continuous everywhere. g is continuous on its domain {¢ | £ = 0}. Thus & is
continuous on its domain { (. u) ‘ T _r'! 2 -2 EI} = {{x, %) | zy < 1} which consists of all points between (but not on)

the two branches of the hyperbolay = 1/,

29. The functions xy and 1 + ¢*~¥ are continuous everywhere, and 1 4+ =¥ is never zero, so Fx, y) = % 15 continuous
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W, Oz, y) = g(f(x,y)) where f(z.y) = (x+ »)™", a rational function that is continuous on B except where = + y =0, and

g(t) = tan™" t, continuous everywhere. Thus (7 is continuous on its domain {(z,4) |  + v # 0} = {(z.y) | v # —z}.
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3. flr.y) = The first piece of [ is a rational function defined everywhere except at the
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origin, so f is continuous on R” except possibly at the origin. Since z* < 2z* + ¢*, we have |="y%/(22” + y2}| < |y3 |- We
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But f{0,0) = 1, so f is discontinuous at (0, 0). Therefore, f is continuous on the set {{z,y) | (z.y) # (0,0)}.



