- 1. (a) $\mathbf{a} \cdot \mathbf{b}$ is a scalar, and the dot product is defined only for vectors, so $(\mathbf{a} \cdot \mathbf{b}) \cdot \mathbf{c}$ has no meaning.
 - (b) (a · b) c is a scalar multiple of a vector, so it does have meaning.
 - (c) Both |a| and b ⋅ c are scalars, so |a| (b ⋅ c) is an ordinary product of real numbers, and has meaning.
- 7. $\mathbf{a} \cdot \mathbf{b} = (2\mathbf{i} + \mathbf{j}) \cdot (\mathbf{i} \mathbf{j} + \mathbf{k}) = (2)(1) + (1)(-1) + (0)(1) = 1$
- 9. By Theorem 3, $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta = (6)(5) \cos \frac{2\pi}{3} = 30 \left(-\frac{1}{2}\right) = -15$.
- 20. $|\mathbf{a}| = \sqrt{1^2 + 2^2 + (-2)^2} = \sqrt{9} = 3$, $|\mathbf{b}| = \sqrt{4^2 + 0^2 + (-3)^2} = \sqrt{25} = 5$, and $\mathbf{a} \cdot \mathbf{b} = (1)(4) + (2)(0) + (-2)(-3) = 10$. Then $\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|} = \frac{10}{3 \cdot 5} = \frac{2}{3}$ and $\theta = \cos^{-1}(\frac{2}{3}) \approx 48^\circ$.
- 23. (a) a · b = (-5)(6) + (3)(-8) + (7)(2) = -40 ≠ 0, so a and b are not orthogonal. Also, since a is not a scalar multiple of b, a and b are not parallel.
 - (b) a · b = (4)(-3) + (6)(2) = 0, so a and b are orthogonal (and not parallel).
- 27. Let $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$ be a vector orthogonal to both $\mathbf{i} + \mathbf{j}$ and $\mathbf{i} + \mathbf{k}$. Then $\mathbf{a} \cdot (\mathbf{i} + \mathbf{j}) = 0 \Leftrightarrow a_1 + a_2 = 0$ and $\mathbf{a} \cdot (\mathbf{i} + \mathbf{k}) = 0 \Leftrightarrow a_1 + a_3 = 0$, so $a_1 = -a_2 = -a_3$. Furthermore \mathbf{a} is to be a unit vector, so $1 = a_1^2 + a_2^2 + a_3^2 = 3a_1^2$ implies $a_1 = \pm \frac{1}{\sqrt{3}}$. Thus $\mathbf{a} = \frac{1}{\sqrt{3}} \mathbf{i} \frac{1}{\sqrt{3}} \mathbf{j} \frac{1}{\sqrt{3}} \mathbf{k}$ and $\mathbf{a} = -\frac{1}{\sqrt{3}} \mathbf{i} + \frac{1}{\sqrt{3}} \mathbf{j} + \frac{1}{\sqrt{3}} \mathbf{k}$ are two such unit vectors.
- 31. The curves $y=x^2$ and $y=x^3$ meet when $x^2=x^3$ \Leftrightarrow $x^3-x^2=0$ \Leftrightarrow $x^2(x-1)=0$ \Leftrightarrow x=0, x=1. We have $\frac{d}{dx}x^2=2x$ and $\frac{d}{dx}x^3=3x^2$, so the tangent lines of both curves have slope 0 at x=0. Thus the angle between the curves is 0° at the point (0,0). For x=1, $\frac{d}{dx}x^2\Big|_{x=1}=2$ and $\frac{d}{dx}x^3\Big|_{x=1}=3$ so the tangent lines at the point (1,1) have slopes 2 and
 - 3. Vectors parallel to the tangent lines are (1, 2) and (1, 3), and the angle θ between them is given by

$$\cos \theta = \frac{\langle 1, 2 \rangle \cdot \langle 1, 3 \rangle}{|\langle 1, 2 \rangle| |\langle 1, 3 \rangle|} = \frac{1+6}{\sqrt{5}\sqrt{10}} = \frac{7}{5\sqrt{2}}$$

Thus $\theta = \cos^{-1}\left(\frac{7}{5\sqrt{2}}\right) \approx 8.1^{\circ}$.

42. $|\mathbf{a}| = \sqrt{4+9+36} = 7$ so the scalar projection of \mathbf{b} onto \mathbf{a} is comp_a $\mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|} = \frac{1}{7}(-10-3-24) = -\frac{37}{7}$, while the vector projection is $\operatorname{proj}_{\mathbf{a}} \mathbf{b} = -\frac{37}{7} \frac{\mathbf{a}}{|\mathbf{a}|} = -\frac{37}{7} \cdot \frac{1}{7} \langle -2, 3, -6 \rangle = -\frac{37}{49} \langle -2, 3, -6 \rangle = \left\langle \frac{74}{49}, -\frac{111}{49}, \frac{222}{49} \right\rangle$.

- 47. $\operatorname{comp}_{\mathbf{a}} \mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|} = 2 \quad \Leftrightarrow \quad \mathbf{a} \cdot \mathbf{b} = 2 \, |\mathbf{a}| = 2 \sqrt{10}. \text{ If } \mathbf{b} = \langle b_1, b_2, b_3 \rangle, \text{ then we need } 3b_1 + 0b_2 1b_3 = 2 \sqrt{10}.$ One possible solution is obtained by taking $b_1 = 0$, $b_2 = 0$, $b_3 = -2 \sqrt{10}$. In general, $\mathbf{b} = \langle s, t, 3s 2 \sqrt{10} \rangle$, $s, t \in \mathbb{R}$.
- 49. The displacement vector is $\mathbf{D} = (6 0)\mathbf{i} + (12 10)\mathbf{j} + (20 8)\mathbf{k} = 6\mathbf{i} + 2\mathbf{j} + 12\mathbf{k}$ so, by Equation 12, the work done is $W = \mathbf{F} \cdot \mathbf{D} = (8\mathbf{i} 6\mathbf{j} + 9\mathbf{k}) \cdot (6\mathbf{i} + 2\mathbf{j} + 12\mathbf{k}) = 48 12 + 108 = 144$ joules.
- 50. Here $|\mathbf{D}| = 1000 \text{ m}$, $|\mathbf{F}| = 1500 \text{ N}$, and $\theta = 30^{\circ}$. Thus $W = \mathbf{F} \cdot \mathbf{D} = |\mathbf{F}| |\mathbf{D}| \cos \theta = (1500)(1000) \left(\frac{\sqrt{3}}{2}\right) = 750,000 \sqrt{3} \text{ joules}.$