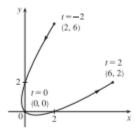
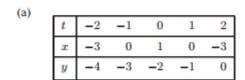
1. $x = t^2 + t$, $y = t^2 - t$	t , $-2 \le t \le 2$
----------------------------------	------------------------

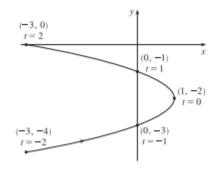
t	-2	-1	0	1	2
\boldsymbol{x}	2	0	0	2	6
y	6	2	0	0	2



7.
$$x = 1 - t^2$$
, $y = t - 2$, $-2 \le t \le 2$



(b)
$$y = t - 2 \implies t = y + 2$$
, so $x = 1 - t^2 = 1 - (y + 2)^2 \implies x = -(y + 2)^2 + 1$, or $x = -y^2 - 4y - 3$, with $-4 \le y \le 0$

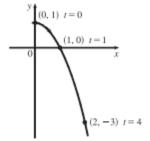


9. $x = \sqrt{t}$, y = 1 - t

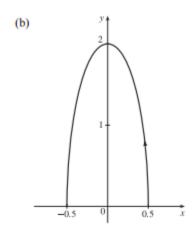
(a)

	t	0	1	2	3	4
	\boldsymbol{x}	0	1	1.414	1.732	2
Γ	y	1	0	-1	-2	-3

(b) $x=\sqrt{t} \Rightarrow t=x^2 \Rightarrow y=1-t=1-x^2$. Since $t\geq 0, x\geq 0$. So the curve is the right half of the parabola $y=1-x^2$.

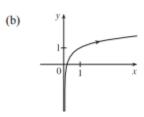


12. (a) $x=\frac{1}{2}\cos\theta, y=2\sin\theta, 0\leq\theta\leq\pi.$ $(2x)^2+\left(\frac{1}{2}y\right)^2=\cos^2\theta+\sin^2\theta=1\quad\Rightarrow\quad 4x^2+\frac{1}{4}y^2=1\quad\Rightarrow\quad \frac{x^2}{(1/2)^2}+\frac{y^2}{2^2}=1, \text{ which is an equation of an ellipse with}$ $x\text{-intercepts}\pm\frac{1}{2} \text{ and } y\text{-intercepts}\pm2. \text{ For } 0\leq\theta\leq\pi/2, \text{ we have }$ $\frac{1}{2}\geq x\geq0 \text{ and } 0\leq y\leq2. \text{ For } \pi/2<\theta\leq\pi, \text{ we have } 0>x\geq-\frac{1}{2} \text{ and } 2>y\geq0. \text{ So the graph is the top half of the ellipse.}$

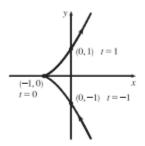


15. (a)
$$x=e^{2t} \Rightarrow 2t=\ln x \Rightarrow t=\frac{1}{2}\ln x.$$

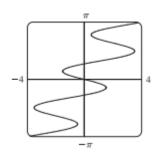
$$y=t+1=\frac{1}{2}\ln x+1.$$



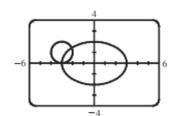
- 24. (a) From the first graph, we have $1 \le x \le 2$. From the second graph, we have $-1 \le y \le 1$. The only choice that satisfies either of those conditions is III.
 - (b) From the first graph, the values of x cycle through the values from −2 to 2 four times. From the second graph, the values of y cycle through the values from −2 to 2 six times. Choice I satisfies these conditions.
 - (c) From the first graph, the values of x cycle through the values from -2 to 2 three times. From the second graph, we have $0 \le y \le 2$. Choice IV satisfies these conditions.
 - (d) From the first graph, the values of x cycle through the values from -2 to 2 two times. From the second graph, the values of y do the same thing. Choice II satisfies these conditions.
- 25. When t = -1, (x, y) = (0, -1). As t increases to 0, x decreases to -1 and y increases to 0. As t increases from 0 to 1, x increases to 0 and y increases to 1. As t increases beyond 1, both x and y increase. For t < -1, x is positive and decreasing and y is negative and increasing. We could achieve greater accuracy by estimating x- and y-values for selected values of t from the given graphs and plotting the corresponding points.</p>



29. Use y=t and $x=t-2\sin\pi t$ with a t-interval of $[-\pi,\pi]$.



45. (a)



There are 2 points of intersection:

(-3,0) and approximately (-2.1, 1.4).

(b) A collision point occurs when $x_1 = x_2$ and $y_1 = y_2$ for the same t. So solve the equations:

$$3\sin t = -3 + \cos t \quad (1)$$

$$2\cos t = 1 + \sin t \qquad (2)$$

From (2), $\sin t = 2\cos t - 1$. Substituting into (1), we get $3(2\cos t - 1) = -3 + \cos t \implies 5\cos t = 0 \quad (\star) \implies \cos t = 0 \implies t = \frac{\pi}{2} \text{ or } \frac{3\pi}{2}$. We check that $t = \frac{3\pi}{2}$ satisfies (1) and (2) but $t = \frac{\pi}{2}$ does not. So the only collision point occurs when $t = \frac{3\pi}{2}$, and this gives the point (-3,0). [We could check our work by graphing x_1 and x_2 together as functions of t and, on another plot, y_1 and y_2 as functions of t. If we do so, we see that the only value of t for which both pairs of graphs intersect is $t = \frac{3\pi}{2}$.]

(c) The circle is centered at (3,1) instead of (-3,1). There are still 2 intersection points: (3,0) and (2.1,1.4), but there are no collision points, since (\star) in part (b) becomes $5\cos t = 6 \implies \cos t = \frac{6}{5} > 1$.