Structure of the Socle and Radical Series for Projective Indecomposable Modules of Simple Groups

Rachel Baumann

University of Arizona Reasearch Tutorial Group

Supervisor: Klaus Lux

December 11, 2014

Introduction

- Overview of Project
- Motivation
- Background

2 Computational Group Algebra Theory

- Method
- Example
- Results and Further Questions

- Looked at the structure of the socle and radical series for projective indecomposable modules of simple groups
- Not a lot of work and developed theory in this field
- Generated experimental data to develop theortical questions and conjectures

- Classify FG-modules: construct all possible FG-modules.
 - First idea: Look at the composition series of a module whose factors are simple modules. Lots of work done here but hard to build the modules.
 - Second idea: Find all projective indecomposable modules and form quotients of direct sums of projective indecomposable modules (PIMs).

Let G be a finite group and F a field of characteristic p.

Theorem

(Maschke's Theorem) A FG-module is semisimple if and only if the characteristic of F does not divide the order of G.

- Interested in what happens when $p \mid |G|$
- Want to measure the closeness to being semisimple

Definition

A *R*-module *M* is **indecomposable** if $M \neq 0$ and *M* cannot be written as a direct sum of two non-zero submodules.

Definition

A *R*-module *P* is **projective** if to every surjective homomorphism $f: M \to N$ of *R*-modules and to every homomorphism $g: P \to N$ there exists a homomorphism $h: P \to M$ with $f \circ h = g$.

• Projective indecomposable modules are precisely the direct summands of *FG*.

- 4 同 6 4 日 6 4 日 6

Definition

The **socle series** for a module M is an increasing chain of submodules defined by $s_1(M) = soc(M)$ and

$$s_i(M)/s_{i-1}(M) = soc(M/s_{i-1}(M)).$$

Definition

The **radical series** for a module M is a decreasing chain of submodules defined by $r_1(M) = rad(M)$ and

$$r_i = \operatorname{rad}(r_{i-1}(M)),$$

where M/rad(M) is the head of M.

Theorem

The radical series terminates in 0 in the k^{th} step if and only if the socle series terminates in M in the k^{th} step.

Theorem

The radical series terminates in 0 in the k^{th} step if and only if the socle series terminates in M in the k^{th} step.

Theorem

For P a projective indecomposable FG-module, $soc(P) \simeq P/rad(P)$ is a simple FG-module. Every simple FG-module is isomorphic to $soc(P) \simeq P/rad(P)$ for some PIM P.

• For *P* a PIM,
$$s_1(P) = r_{k-1}(P)$$
 and $r_1(P) = s_{k-1}(P)$

• What about the intermediate factors? When are the series equal?

• A PIM P is upper-stable (lower-stable) if

$$r_2(P) = s_{k-2}(P)$$
 $(s_2(P) = r_{k-2}(P))$

Theorem

(Landrock) If all projective indecomposable FG-modules are either all upper or all lower stable then all PIMs have the same Loewy length.

- Used GAP and package Basic to compute the group algebra, database of simple modules, PIMs, and the socle and radical series for PIMs
- Used matrices to keep track of the simple modules in each factor for easy comparison of the series

- Mathieu group $G = M_{11}$ and F a field of characteristic 11
- 8 PIMs, 2 having differing socle and radical series
- Database 5 simple modules *a*, *b*, *c*, *d*, *e*

$$M_{r}(P_{5}) = \begin{pmatrix} \cdot & \cdot & \cdot & \cdot & 1 \\ \cdot & \cdot & \cdot & 1 & 1 \\ \cdot & 1 & \cdot & 1 & 1 \\ \cdot & 1 & 1 & 1 & 2 \\ \cdot & 1 & 1 & 1 & 3 \end{pmatrix} \begin{pmatrix} r_{5} & & & \\ r_{4} & & \\ r_{3} & & M_{s}(P_{5}) = \begin{pmatrix} \cdot & \cdot & \cdot & \cdot & 1 \\ \cdot & \cdot & \cdot & 1 & 2 \\ \cdot & 1 & \cdot & 1 & 2 \\ \cdot & 1 & 1 & 1 & 2 \\ \cdot & 1 & 1 & 1 & 3 \end{pmatrix} \begin{pmatrix} s_{1} \\ s_{2} \\ s_{3} \\ s_{4} \\ s_{5} \end{pmatrix}$$

Results

- Computed series for about 100 group algebras
- Only about 30 had differing series

Group	<i>Sz</i> (8)	<i>Sz</i> (8)	$L_2(17)$	M_{11}	$L_{2}(8)$	M_{11}	$U_{3}(3)$	M_{11}	$U_{3}(3)$	$L_{3}(2)$	<i>U</i> ₃ (3)	A_7
Prime	2	5	3	11	3	2	2	3	3	2	7	2
Mult.	6	1	2	1	2	4	5	2	3	3	1	3
PIMs	7	4	2	5	2	3	3	7	8	3	3	3
DPs	7	1	1	4	1	1	2	6	8	2	1	2
TF	27	4	5	5	5	5	19	7	9	5	5	5
PSNTF	Т	F	F	F	F	Т	Т	Т	Т	F	F	Т
PMDF	16	1	2	2	2	2	14	2	6	2	2	2
PSNDF	Т	Т	Т	Т	Т	Т	F	Т	F	Т	Т	Т
PMDS	7	1	1	1	1	1	2	1	9	1	1	1
PSNDS	F	Т	Т	Т	Т	Т	F	Т	F	Т	Т	Т

Group	U ₄ (2)	$L_2(31)$	<i>M</i> ₁₂	U ₄ (2)	$L_2(23)$	$L_{3}(3)$	<i>M</i> ₁₂	$L_{3}(3)$	A_8	L ₃ (3)	$L_2(32)$	L ₃ (4)
Prime	2	2	2	3	2	13	3	2	2	3	11	2
Mults.	6	5	6	4	3	1	3	4	6	3	1	6
PIMs	7	3	3	5	3	3	8	3	7	8	2	5
DPs	7	2	3	3	2	1	8	2	7	8	1	5
TF	13	17	10	13	5	5	9	5	13	9	6	13
PSNTF	Т	F	Т	F	F	F	Т	Т	Т	Т	F	Т
PMDF	10	14	5	10	2	2	6	2	10	6	3	8
PSNDF	F	Т	Т	Т	Т	Т	Т	Т	Т	F	Т	Т
PMDS	25	1	6	24	1	1	12	1	19	9	1	24
PSNDS	F	Т	F	F	Т	Т	F	Т	F	F	Т	F

* ロ > * 個 > * 注 > * 注 >

2

- When do we have equality of the series for all PIMs?
- Relations when $p^n | |G|$ exactly?
- Bounds on number of differing factors?
- Bound on number of differing simples in factors?

References

- Carlson, J. F. *Modules and Group Algebras*. Basel: Birkhauser Verlag, 1996. Print.
- Grove, Larry C. Groups and Characters. New York: Wiley, 1997. Print.
- Hilton, Peter and Urs Stammbach. A Course in Homological Algebra. New York: Springer-Verlag, 1971. Print.
- Hoffman, Tom and Klaus Lux. "Basic Package Documentation." June 2014.
- James, G.D. "The Modular Characters of the Mathieu Groups." Journal of Algebra 27.1 (1973): 57-111. Web.
- Landrock, Peter. "Some Remarks on Loewy Lengths of Projective Modules." *Lecture Notes in Mathematics* 832 (1980): 369-81. Web.
- Serganova, Vera. "Representation Theory." Web. 1 Dec. 2014. https://math.berkeley.edu/ serganov/math252/notes9.pdf.

→ < ∃ →</p>

The End Questions?

Rachel Baumann (UA)

PIMs of Simple Groups

э December 11, 2014 16 / 16

- 一司

3