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Chapter 1

Introduction

In this research project I computed experimental data in GAP on the socle and radical series

of projective indecomposable modules of sfinite imple groups and I will discuss the structure of

the series and their relations to each other. I will explain the methods used in GAP to construct

the group algebra, projective indecomposable modules, and their socle and radical series. In

closing I will look at a few examples and discuss some of the results.

1.1 Motivation

Let F be a field and let G be a finite group. There are many cases where group theoretic

statements can be proved much easier using representation theory than group theory. A classic

example of this is Burnside’s paab theorem:

Theorem 1.1. If p and q are primes in N and G is a group of order paqb then G is solvable.

The proof of this theorem by William Burnside is one of the best applications of representation

theory since the proof is very short and straight forward whereas the proof using purely group

theory is quite long and requires a much stronger backgroud in the theory of finite groups.

Thus we see that there is a great benefit to using representation theory to prove group the-

oretic statements. Furthermore there is a very nice one-to-one correspondence between the

F -representations of G and FG-submodules.My particular interest will be in looking at FG-

modules for finite simple groups.

In studying modules we want to classifying all modules which leads to questions on the con-

struction of modules. There are two approaches to constructing modules with one being more

näıve than the other. But in order to see the benefits of one over the other I will explain both.
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Section 1. Introduction 2

Let R be a ring with unity and let M be a module over R.

Definition 1.2. An R-module M is said to be semisimple if it is the direct sum of simple

submodules.

Simple modules are the building block with which we construct modules. Thus the case of

semisimple modules are easy to construct. However, many naturally occuring modules are not

semisimple thus we need a different way to break up a module into simple pieces.

1.2 Constructing Modules

The first näıve way of constructing modules is by looking at the composition series of the module.

Definition 1.3. A composition series for M is a chain

0 < M1 < M2 < · · · < Mk−1 < Mk = M

of submodules orded by strict inclusion where Mi is a maximal submodule of Mi+1. The quotient

modules Mi+1/Mi are called the composition factors.

Note that in general a composition series may not even exists. However, in the case that R = FG

for G a finite group, then R is a finite dimenaional algebra and hence R is both Artinian and

Noetherian and thus it can be shown that any R-module M has a finite composition series.

Furthermore the following theorem by Jordan and Hölder gives that the composition factors are

uniquely determined upto permuation:

Theorem 1.4. (Jordan-Hölder’s Theorem)

If

0 < M1 < M2 < · · · < Mk−1 < Mk = M

and

0 < N1 < N2 < · · · < Nt−1 < Nt = M

are both composition series of M then t = k and to any composition factor Mi+1/Mi there is a

composition factor Nj+1/Nj such that Mi+1/Mi ' Nj+1/Nj.

Now these composition factors of a series are simple R-modules giving us the simple pieces

needed in constructing a module. However, even in having all the simple R-modules there are

choices to be made in construcing the R-submodules in the composition series. This is not

ideal since larger and larger modules will result in many more choices. This leads us to the sec-

ond approach in constructing modules but we will need some more background in module theory.



Chapter 2

Some Module Theory

Now we look at the second approach to constructing modules by way of projective indecom-

posable modules of a group and looking at the quotients of direct sums of these modules. Let

G be a finite group and F a field. We are interested in the case that the group algebra FG is

not semisimple. Applying Maschke’s Theorem on G gives us the cases of interest for the field

characteristic of F .

Theorem 2.1. (Maschke’s Theorem) All FG-modules are semisimple if and only if the char-

acteristic of F does not divide the order of G.

Proof. Given by Carlson [1] on page 4.

Thus the cases when p - |G| or when char(F ) = 0 are not interesting as these algebras are

semisimple by Maschke’s theorem and hence easily construcible from simple modules; so we’re

done in this case. Therefore, we restrict to the more interesting case when F is a field of

characteristic p with p | |G| and explore constructing FG-modules by looking at projective

indecomposable modules as our simple pieces and measuring the closeness of these to being

semisimple.

2.1 Projective Indecomposable Modules of a Group

Let R be a ring with unity, which in our specific case will be the group algebra FG, with G a

finite simple group and F a field of characteristic p with p | |G|.

Definition 2.2. A R-module M is indecomposable if M 6= 0 and M cannot be written as a

direct sum of two non-zero submodules.

3



Section 2. Some Module Theory 4

A restatement of Maschke’s Theorem in terms of simple (also called irreducible) and indecom-

posable modules gives the following relation:

Theorem 2.3. (Maschke’s Theorem) If char(F ) - |G| then irreducible (i.e simple) FG-modules

are equivalent to indecomposable FG-modules.

”Much of the role that simple modules play in complex representation theory is played in

modular representation theory by indecomposable modules” ([2], 344). However, if char(F ) | |G|
then it is not true that irreducible and indecomposable are equivalent. An indecomposable

module is weaker than a simple module. That is, any simple module is indecomposable but it

is not the case that indecomposable modules are simle as seen in the following representation

example.

Example 2.1. Let G = C2 = {1, x} and F = F2. Consider the following representation

ρ : G→ GL2(F2) ρ(x) =

[
0 1

1 0

]

Now ρ is not irreducible as the subspace U =

[
1

1

]
is a ρ-invariant subspace. However, ρ is

indecomposable. Indeed, U is the unique ρ-invariant subspace and hence we cannot decompose

ρ. Therefore, we see that irreducibility is stronger than indecomposability.

Now these indecomposable modules are precisely the direct summands of FG and we’ll see that

there is a bijection between the isomorphism classes of projective indecomposable FG-modules

and the isomorphism classes of simple FG-modules.

Theorem 2.4. (Krull-Schmidt) Let M be a FG-module. Then M is a diect sum

M = M1 ⊕ · · ·Mm

of indecomposable FG-modules M1, . . . ,Mm. Moreover, if M = M ′1⊕· · ·⊕M ′m′ and M ′1, . . . ,M
′
m′

are indcomposable, then m′ = m and there is a permutation π ∈ Sm such that Mi ' M ′π(i) for

i = 1, . . .m.

For finite groups the number of isomorphic classes of simple modules is finite whereas the number

of isomorphism classes of indecomposable modules is, in many cases, infinite. Thus we split the

indecomposable modules into a subclass of projective indecomposable modules.
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Definition 2.5. A R-module P is projective if to every epimorphism f : M → N of R-modules

and to every homomorphism g : P → N there exists a homomorphism h : P →M with f ◦h = g.

M

P Ng
�

∃ h f

Example 2.2. Every free module is a projective module. Indeed for F a free R-module and

{ei}i∈I a finite set of generators for F , that is F =
⊕

i∈I Rei. If f : M → N is a surjective

homomorphism of R-modules and g : F → N is a homomorphism then define h : F → M by

h(ei) = f−1(g(ei)).

Definition 2.6. A principal indecomposable module (PIM) of a ring R is a submodule of R

that is a direct summand of R and is indecomposable.

Definition 2.7. A left semiperfect ring R is a ring in which all left-modules X have projective

covers (that is a pair (P, p) where P is a projective R-module and p : P → X a superfluous

epimorphism.)

When over a semiperfect ring, as FG-modules are, projective indecomposable modules are prin-

cipal indecomposable modules which I will refer to as PIMs. By example 2.2 every module

is a quotient of a projective module. This leads to the correspondence between the isomor-

phism classes of simple R-modules and the isomorphism classes of projective indecomposable

R-modules.

Theorem 2.8. Let R be a semiperfect ring. Every simple R-module S has a unique (up to

an isomorphism) indecomposable projective cover isomorphic to Re for some primitive idem-

potent e ∈ R. Every indecomposable projective module has a unique simple quotient (up to an

isomorphism).

Proof. See proof by Serganova [3].

Corollary 2.9. Every indecomposable projective module over a semiperfect ring R is isomorphic

to Re for some primitive idempotent e ∈ R. There is a bijection between the isomorphism classes

of simple R-modules and isomorphism classes of projective indecomposable R-modules.

Since the projective indecomposable FG-modules are precisely the direct summands of FG, by

finding the PIMs and forming quotients of direct sums of PIMs we can construct a FG-module.

So the goal is to find the PIMs of FG and formulate questions on the structure of these PIMs.
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2.2 The Socle and Radical Series of PIMs

Let A be a finite dimensional algebra, specifically we will be taking A = FG, let b be a block of

A (indecomposable two sided ideals of A) and M ∈ b an indecomposable module.

Definition 2.10. The socle of an A-module M is the sum of all simple submodules of M ,

soc(M) =
∑
{N | N is a semisimple module of M}

Note that soc(M) is a maximal semisimple submodule of M . Dual to this is the radical of M

which is the minimal submodule of M with semisimple quotient.

Definition 2.11. The radical of an A-module M is the intersection of all submodules N of M

with M/N semisimple,

rad(M) =
⋂
{N |M/N is semisimple}

We will be looking at the case that M is a PIM and in particular the structure of the socle and

radical series for a PIM which we define now.

Definition 2.12. The socle series (or upper Loewy series) for an indecomposable A-module M

is defined by s1(M) = soc(M) and

si(M)/si−1(M) = soc(M/si−1(M)).

The socle series is a strictly increasing chain of submodules. If the socle series terminates in M

then the minimal k such that sk(M) = M is called the socle length of M .

Definition 2.13. The radical series (or lower Loewy series) for an indecomposable A-module

M is defined by r1(M) = rad(M) and

ri = rad(ri−1(M)),

where M/ rad(M) is the head of M .

Dually, the radical series is a strictly decreasing chain of submodules. If the radical series

terminates in 0 then the minimal k such that rk(M) = 0 is called the radical length of M . Now,

in general, the socle and radical series of a R-module M may not terminate. However, in the

case of FG-modules M , since these are Artinian, we have that both series terminate; the socle

series terminating in M and the radical series terminating in 0. Furthermore, the following

theorem gives equality of the lenghts of these series.
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Theorem 2.14. Let R be an Artinian ring and let M be a R-module. Then the radical series

of M terminates in 0 in the kth step if and only if the socle series of M terminates in M in the

kth step.

Proof. First as R is Artinian we have that both series terminate. Let l be the length of the socle

series of a module M and let k be the length of the radical series of M . Then by defintion as

radi(M) is the minimal submodule such that radi+1(M)/ radi(M) is semisimple, we have that

socl−i(M) ⊇ radi(M)

hence l ≥ k. Also as soci(M) is the preimage of the maximal semisimple submodule of

M/ soci−1(M) we have that l ≤ k and hence l = k.

This length l(M) for both the socle and radical series is called the Loewy Length. Next, if we

look at the socle and radical series of a PIM P then we have some nice results.

Theorem 2.15. For P a projective indecomposable FG-module, soc(P ) ' P/ rad(P ) is a simple

FG-module. Every simple FG-module is isomorphic to soc(P ) ' P/ rad(P ) for some PIM P .

Therefore, for P a PIM we have that

soc(p) = radl(P )−1(P ) and rad(P ) = socl(P )−1(P ).

Thus we might now ask, what happens with the intermediate terms of the series? When do

we have equality of the socle and radical series for PIMs? If we don’t have equality then are

there bounds on how different the socle series can be from the radical series? That is can we

bound the number of factors in the series which are different and or can we bound the number

of differing simple modules between differing factors? These are questions we wish to explore

and thus the reason for generating experimental data from simple groups so we can have some

intuition in formulating theoretical conjectures for these questions.

Another interesting question to be asked is what can be said about the socle and radical series for

projective indecomposable FG-modules as a collection? What about the subset with differing

socle and radical series? One step in this direction is seen in Landrock’s paper [4] where he

gives conditions on the socle and radical series of the PIMs which in turn tell us that all PIMs

have the same Loewy length.
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Definition 2.16. A projective indecomposable FG-module P is said to be upper-stable (re-

spectively lower-stable) if

rad2(P ) = socl(P )−2(P ) (respectively soc2(P ) = radl(P )−2(P )).

Theorem 2.17. Let S be a symmetric algebra, b a block of S. Assume that all projective

indecomposable modules of b are either all upper-stable or all lower-stable. Then all projective

indecomposable modules have the same Loewy length.

Proof. See the proof in Landrock’s paper [4] for theorem 1.

We would like to explore this a bit further and see if anything can be said similarly when say

the ith and (l(P ) − i)th factors of the socle and radical series are equal for all PIMs. Thus we

now need to look at how to compute the socle and radical series of PIMs explicitly.



Chapter 3

Question on the Equality of the

Socle and Radical Series

For this project I looked at FG-modules for simple groups working up from smaller simple groups

to the larger ones. Now the projective indecomposable modules are rather complicated to work

with which is why we make use of a computer. The main tool I used in this project was GAP, the

”Groups, Algorithms, and Programming” software package designed for computational group

theory [5].

3.1 Computational Group Theory Using GAP

In order to look at the strucuture of the socle and radical series of projective indecomposable

FG-modules we need a way to compute the PIMs of FG. However, using FG and finding the

PIMs is a näıve approach since not all simple FG-modules are known. Thus we take a different

approach of looking at the basic algebra of FG.

Before I define the basic algebra of an algebra A we need some background. Denote Mod(A)

to be the category of of all right A-modules over a F -algebra A and mod(A) to be the full

subcategory of Mod(A) whose objects are the finite dimensional right A-modules over F .

Definition 3.1. Two F -algebras A and B are Morita equivalent if there is an equivalence of

the categories Mod(A) and Mod(B).

Proposition 3.2. Let A and B be finite dimensional F -algebras and Ψ : Mod(A) → Mod(B)

be a Morita equivalence. Then for every nonzero module M in mod(A) the following hold:

1. M is a simple module in mod(A) if and only if Ψ(M) is a simple module in mod(B).

9
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2. M is an indecomposable module in mod(A) if and only if Ψ(M) is an indecomposable

module in mod(B).

3. M is a projective module in mod(A) if and only if Ψ(M) is a projective module in mod(B).

4. Let M1, . . .Mn be nonzero modules in mod(A). Then M ' M1 ⊕ · · · ⊕Mn in mod(A) if

and only if Ψ(M) ' Ψ(M1)⊕ · · · ⊕Ψ(Mn) in mod(B).

For A a finite dimensional F -algebra with e1, . . . , er a complete set of primitive, orthogonal

idempotents of A then the basic algebra of A, uniquely determined by A, is defined to be the

algebra Ab = eAe where e = e1 + · · ·+ er [6]. Note that in practice finding idempotent elements

of A = FG can be tricky so we apply Maschke’s trick of taking a subgroup H ≤ G with

char(F ) - |H| and taking the idempotent element:

eH =
1

|H|
∑
h∈H

h ∈ FG.

It’s easy to check that eHFGeH is a subalgebra of FG. This is a special idempotent called a

fixidempotent of FG.

Theorem 3.3. Every finite dimensional F -algebra A is Morita equivalent to its basic algebra

Ab.

Theorem 3.4. Let A and B be finite dimensional F -algebras. Then A and B are Morita

equivalent if and only if the basic algebra Bb and Ab.

Proof. See proof by Skowroński and Yamagata ([6], page 174).

Applying proposition 3.2 we have that two Morita equivalent algebras have the same number of

simple modules as well as a bijection between their projective indecomposable modules. Also

the structure of the socle and radical series are preserved under this equivalence. ”An important

class of finite dimensional algebras A are the indecomposable two sided ideals, also called blocks

of a group algebra FG, where G is a finite group and F is a finite field” [7]. The GAP package

basic is used to compute the basic algebra of a given algebra FG. In the current version of

basic a fixidempotent of FG is used in constructing the basic algebra of FG. We then look at

the PIMs of the basic algebra comupted by basic and compute the socle and radical series of

these PIMs. A more through description and documentation of the package basic is given by

Hoffman and Klaus [7].
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3.2 Methods

This section gives an outline of what my GAP code does to compare the socle and radical series

of projective indecomposable modules for G a simple group and F a finite field with character-

istic dividing the order of G. Depending on the size of the group and the field characteristic,

computing the basic algebra can be very time expensive. Thus for some of the larger simple

groups I made use of the basic algebras already computed by Klaus Lux. The only difference in

the two algorithms is in the input. One just takes in the name of the group and characteristic

to compute the basic algebra using basic while the other takes in the already computed basic

algebra. I will outline the later algorithm srCheckAlg:

1. Given a block B of the basic algebra FGb computed using basic, run through all PIMs

of the block B.

2. Construct the socle and radical series for each PIM P with respect to the standard database

db of simple modules using the GAP functions SocleSeries and RadicalSeries.

3. Construct the matrix mats for the socle series of P , where the ith row corresponds to

soci(P ) and each column corresponds to the simple modules of db. A nonzero entry (i, j)

in the matrix represents the number of times the simple module corresponding to the jth

column appears in soci(P ).

4. Construct the matrix matr for the radical series of P , where the ith row corresponds to

radl(p)−i(P ) and each column corresponds to the simple modules of db. A nonzero entry

(i, j) in the matrix represents the number of times the simple module corresponding to

the jth column appears in radl(P )−i(P ).

5. A list of a single record list[1] is returned (in the future other characteristics for the

group may be add to this list). The components of the list are as follows:

• groupName: list[1].groupName is the name of the simple group G being investigated.

• characteristic: list[1].characteristic is the characteristics of the basic algebra FGb.

• srAllEqual: list[1].srAllEqual is true if the socle and radical series of all PIMs in B

are equal and false otherwise.

• PIMs: list[1].PIMs is a list of records for each PIM of B. The components of this

record are:

socleSeries: list[1].PIMs[i].socleSeries is the matrix mats for PIM Pi.

radicalSeries: list[1].PIMs[i].radicalSeries is the matrix matr for PIM Pi.

srEqual: list[1].PIMs[i].srEqual is true if the socle and radical series for Pi are

equal and false otherwise.
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Note that srCheck is similar as above but includes the initial step of computing the basic algebra

FGb for a simple group G and field F . See the appendix for the source code for srCheckAlg

and srCheck.

3.3 Example Computation For A5

Here I demonstrate a basic example of how we compute in GAP the PIMs of FGb and the

socle and radical series of each PIM where G = A5 and F is a field of characteristic 5. Using

the AtlasRep and Basic package in GAP we begin by initializing our group algebra FG and

by running AutoCalcBasic we compute the basic algebra FGb considering the principal block

(block 1), and construct the PIMs of this block. See documentation of basic package for specific

details [7].

gap> alg:=InitializeRecordAtlasGroup("A5", 5, 1);;

gap> AutoCalcBasic(alg);

Using my function, srCheckAlg, we compute the matrices for the socle and radical series for

each PIM of block 1 of FGb, showing that there are two PIMs both of which have equal socle

and radical series:

gap> Read("ReadSRseries");

#I Have suborbits, compiling result record...

#I Computing conjugate suborbits...

gap> srCheckAlg("A5", 5);

gap> list[1];

rec(

PIMs := [

rec( radicalSeries := [ [ 1, 0 ], [ 1, 1 ], [ 2, 1 ] ],

socleSeries := [ [ 1, 0 ], [ 1, 1 ], [ 2, 1 ] ], srEqual := true ),

rec( radicalSeries := [ [ 0, 1 ], [ 1, 2 ], [ 1, 3 ] ],

socleSeries := [ [ 0, 1 ], [ 1, 2 ], [ 1, 3 ] ], srEqual := true ) ]

, characteristic := 5, groupName := "A5", srAllEqual := true )

Walking through the code step by step, after we have constructed the PIMs for block 1 of FG

and we compute the matrices for the socle and radical series for each PIM. Looking at just the

second PIM, which I’ll call P2, first we create our standard database of simple FGb-modules db,

then we have the following socle and radical series in terms of this standard database of simple

FGb-modules, db:
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gap> module := alg.PIMs[2].PIM;

<module of dim. 4 over GF(5)>

gap> db:=Chop(alg.global_simples[1]).db;

[ <trivial module of dim. 1 over GF(5)> ]

gap> for i in [2..Length(alg.global_simples)] do

> db:=Chop(alg.global_simples[i], rec(db:=db)).db;

> od;

gap> soc:=SocleSeries(module, db);

rec( basis := <cmat 4x4 over GF(5,1)>,

cfposs := [ [ [ 1 ] ], [ [ 2 ], [ 3 ] ], [ [ 4 ] ] ],

db := [ <trivial module of dim. 1 over GF(5)>,

<abs. simple module of dim. 1 over GF(5)> ],

ibasis := <cmat 4x4 over GF(5,1)>, isotypes := [ [ 2 ], [ 1, 2 ], [ 2 ] ],

issoclerecord := true, module := <module of dim. 4 over GF(5)> )

gap> rad:=RadicalSeries(module, db);

rec( basis := <immutable cmat 4x4 over GF(5,1)>,

cfposs := [ [ [ 1 ] ], [ [ 2 ], [ 3 ] ], [ [ 4 ] ] ],

db := [ <trivial module of dim. 1 over GF(5)>,

<abs. simple module of dim. 1 over GF(5)> ],

ibasis := <immutable cmat 4x4 over GF(5,1)>,

isotypes := [ [ 2 ], [ 1, 2 ], [ 2 ] ], isradicalrecord := true,

module := <module of dim. 4 over GF(5)> )

From the list isotypes we see that there are three composition factors in both the socle and

radical series and the values [1] and [2] correspond to the simple FG-modules in the standard

database db we created:

gap> db;

[ <trivial module of dim. 1 over GF(5)>,

<abs. simple module of dim. 1 over GF(5)> ]

Thus we see that indeed the factors in the both series match up since each corresponding factor

consists of the same simple modules from db. In contrast to the output from srCheck for the

second PIM we have the following 3× 2 matrices:

gap> list[1].PIMs[2];

rec( radicalSeries := [ [ 0, 1 ], [ 1, 2 ], [ 1, 3 ] ],

socleSeries := [ [ 0, 1 ], [ 1, 2 ], [ 1, 3 ] ], srEqual := true )
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gap> list[1].PIMs[2].radicalSeries;

[ [ 0, 1 ], [ 1, 2 ], [ 1, 3 ] ]

gap> list[1].PIMs[2].socleSeries;

[ [ 0, 1 ], [ 1, 2 ], [ 1, 3 ] ]

Where the number of rows correspond to the number of factors in the series of which we already

know to be equal for both the socle and radical series and the number of columns corresponds

to the number of simple module in db. Now for the matrix for the socle series, the first row

represents the simple module in the first factor soc1(P2), thus as there is a 1 in the second

column this means the factor is the simple module db[2]. Continuing, the second row is

soc2(P2) which is a direct sum of the simple modules db[1] and two copies of db[2]. One nice

feature of the matrix represenations of the socle series is that it is easy to see what the quotients

soci(P2)/ soci−1(P2) are in terms of the simple FG-modules. For example soc2(P2)/ soc1(P2) is

isomorphic to the direct sum of db[1] and db[2]. Next, the radical matrix is read from bottom

to top. That is the first factor of the radical series is the last row of the matrix. In comparing

both series factors, this is a good format as checking equality of rows corresponds to checking if

socl(P2)−i(P2) = radi(P2). Indeed we see for both PIMs of A5 in characteristic 5 that the socle

and radical series are equal.

3.4 Example When the Socle and Radical Series Differ

In getting data on the socle and radical series of PIMs of simple groups one question that arose

was for which groups and field characteristics do the series differ. It turned out that this is

not as common and in order to find the right group and characteristic theoretically we need

some background theory. The way we went about this was to look at module diagrams for

constructing PIMs in the case that p | |G| exactly once and in particular we looked at Brauer

trees from a Brauer tree algebras to see that the Mathieu-11 group in characteristic 11 would

give the desired result. First some definitions of Brauer tree and Brauer tree algebras.

Definition 3.5. (Alperin (as cited in [8])) A Brauer graph G is a finite connected graph,

together with the following data:

(i) There exists a cyclic ordering of the edges adjacent to each vertex, usually described by

the clockwise ordering given by a fixed planar representation of G;

(ii) For each vertex v, there exists a positive integer mv assigned to v, called the multiplicity.

We call a vertex v exceptional if mv > 1.
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Definition 3.6. A Brauer tree G is a Brauer graph which is a tree and having at most one

exceptional vertex.

A Brauer tree algebra A = AG is a basic algebra given by a Brauer tree G as follows:

(i) There exists a one-to-one correspondence between simple A-modules Si and edges i of G;

(ii) For any edge i of G, the projective indecomposable A-module Pi has soc(Pi) ' Pi/ rad(Pi)

and rad(Pi)/ soc(Pi) is the direct sum of two uniserial modules [that is modules whose

submodules are totally ordered by inclusion] whose composition factors are, for the cyclic

ordering (i, i1, . . . , ia, i) of the edges adjacent to a vertex v, Si1 , . . . , Sia , Si, Si1 , . . . , Sia

(from the top to the socle) where Si appears mv − 1 times.

Taking F to be a field of characteristic 11 and G = M11 we note that 11 | |M11| exactly once.

As F -representations of G correspond to PIMs we look at the Brauer character table for M11

in characteristic 11 which leads to the following theorem:

M11mod11

2 4 4 1 3 . 1 3 3

3 2 1 2 . . 1 . .

5 1 . . . 1 . . .

11 1 . . . . . . .

1a 2a 3a 4a 5a 6a 8a 8b

2P 1a 1a 3a 2a 5a 3a 4a 4a

3P 1a 2a 1a 4a 5a 2a 8a 8b

5P 1a 2a 3a 4a 1a 6a 8b 8a

11P 1a 2a 3a 4a 5a 6a 8a 8b

X.1 1 1 1 1 1 1 1 1

X.2 9 1 . 1 -1 -2 -1 -1

X.3 10 -2 1 . . 1 A -A

X.4 10 -2 1 . . 1 -A A

X.5 11 3 2 -1 1 . -1 -1

X.6 16 . -2 . 1 . . .

X.7 44 4 -1 . -1 1 . .

X.8 55 -1 1 -1 . -1 1 1

A = E(8)+E(8)^3

= Sqrt(-2) = i2
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Theorem 3.7. In M11 the characters of degrees 11, 44 and 55 belond to blocks of defect 0 for

characteristic 11. All other characters are in the principle block [9].

By theorem 3.7 we have that there are five PIMs in the principal block and five simple modules

corresponding to the characters of of degree 1, 9, 10, 10’, and 16 which will be the five edges in

the Brauer tree diagram s1, s9, s10, s16, s10′ respectively. By applying (ii) of the definition of a

Brauer tree algebra we have the following tree diagram for M11 in characteristic 11 below.

Figure 3.1: Brauer Tree for principal block of M11 in characteristic 11.

The edge labels are the Brauer character degrees corresponding to the simple modules and the

vertices are labeled by sum of the character degrees on edges incoming to the vertex. The

exceptional vertex is the one circled in figure 3.1. Now from the figure we see for the projective

indecomposable FG-module P9, as rad(P9)/ soc(P9) is a direct sum of two uniserial modules

as described in definition 3.2, we have the following simple modules in the factors of the socle

series of P9 beginning with soc1(P9) and ending with soc5(P9):

s9

s1 ⊕
s10′

s9

s1 ⊕ s16

s10′

s9

s10

s1 ⊕ s16

s10′

s9

s9

s10

s1 ⊕ s16

s10′

s9

Note that the last box is the body of the PIM P9 and is obtained by listing the adjacent edges

in the Brauer tree diagram to edge 9 in a counterclockwise fashion. Next we do the same for

the radical series. Again by applying definition 3.2 we have the following simple modules in the

factors of the radical series of P9 beginning with rad1(P9) and ending with rad5(P9):



Section 3. Question on the Equality of the Socle and Radical Series 17

s9

s10

s1 ⊕ s16

s10′

s9

s10

s1 ⊕ s16

s10′

s9

s16

s10′

s9

s10′

s9 s9

Note that we compare the reverse of the radical series with the socle series and thus see clearly

that soci(P9) ⊇ rad6−i(P9) for all 1 ≤ i ≤ 5. However, it’s clear that soc2(P9) 6= rad4(P9)

and soc3(P9) 6= rad3(P9) and thus we conclude that the socle and radical series for P9 will not

coincide. Note the expected matrices for the socle and radical series of P9 with columns ordered

based on the simple module order s1, s9, s10, s16, s10′ are as follows:

Msoc(P9) =



0 1 0 0 0

1 1 0 0 1

1 1 0 1 1

1 1 1 1 1

1 2 1 1 1


Mrad(P9) =



0 1 0 0 0

0 1 0 0 1

0 1 0 1 1

1 1 1 1 1

1 2 1 1 1


We note that only two factors are different and only by one simple module s1. Next, checking

in GAP by running srCheck("M11", 11), the only PIMs with different radical and socle series

are P2 and P5 in the list below; all the others have equal socle and radical series.

gap> list[1];

rec( PIMs :=[

rec( radicalSeries := [ [ 1, 0, 0, 0, 0 ], [ 1, 1, 0, 0, 0 ],

[ 2, 1, 0, 0, 0 ] ],

socleSeries := [ [ 1, 0, 0, 0, 0 ], [ 1, 1, 0, 0, 0 ],

[ 2, 1, 0, 0, 0 ] ], srEqual := true ),

rec( radicalSeries := [ [ 0, 1, 0, 0, 0 ], [ 0, 1, 1, 0, 0 ],

[ 0, 1, 1, 0, 1 ], [ 1, 1, 1, 1, 1 ], [ 1, 2, 1, 1, 1 ] ],

socleSeries := [ [ 0, 1, 0, 0, 0 ], [ 1, 1, 1, 0, 0 ],

[ 1, 1, 1, 0, 1 ], [ 1, 1, 1, 1, 1 ], [ 1, 2, 1, 1, 1 ] ],

srEqual := false ),

rec( radicalSeries := [ [ 0, 0, 1, 0, 0 ], [ 0, 0, 1, 0, 1 ],

[ 0, 0, 1, 1, 1 ], [ 0, 1, 1, 1, 1 ], [ 0, 1, 2, 1, 1 ] ],

socleSeries := [ [ 0, 0, 1, 0, 0 ], [ 0, 0, 1, 0, 1 ],

[ 0, 0, 1, 1, 1 ], [ 0, 1, 1, 1, 1 ], [ 0, 1, 2, 1, 1 ] ],

srEqual := true ),
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rec( radicalSeries := [ [ 0, 0, 0, 1, 0 ], [ 0, 1, 0, 1, 0 ],

[ 0, 1, 1, 1, 0 ], [ 0, 1, 1, 1, 1 ], [ 0, 1, 1, 2, 1 ] ],

socleSeries := [ [ 0, 0, 0, 1, 0 ], [ 0, 1, 0, 1, 0 ],

[ 0, 1, 1, 1, 0 ], [ 0, 1, 1, 1, 1 ], [ 0, 1, 1, 2, 1 ] ],

srEqual := true ),

rec( radicalSeries := [ [ 0, 0, 0, 0, 1 ], [ 0, 0, 0, 1, 1 ],

[ 0, 1, 0, 1, 1 ], [ 0, 1, 1, 1, 2 ], [ 0, 1, 1, 1, 3 ] ],

socleSeries := [ [ 0, 0, 0, 0, 1 ], [ 0, 0, 0, 1, 2 ],

[ 0, 1, 0, 1, 2 ], [ 0, 1, 1, 1, 2 ], [ 0, 1, 1, 1, 3 ] ],

srEqual := false ) ], characteristic := 11, groupName := "M11",

srAllEqual := false )

As the columns represent the simple modules in the database db we see that indeed, upto

permuting the columns of P2, the socle and radical matrices of P2 are identical to those of P9

computed by hand. Therefore, because of this example we do not have the case that the socle

and radical series are equal for PIMs of simple groups. Some interesting observations from this

example: (1) the lengths of the series for the PIMs with differing or the PIMs with equal socle

and radical series are the same length and (2) the PIMs with differing series both differ by two

factor and in each factor by one simple module.

3.5 Results

Over this semester I looked at about 100 different group algebras, FG. Of these about 30 had

PIMs for which their socle and radical series differed. I have compiled the results from 27 of

these groups in the tables below where only 17 are different simple groups.

Table 3.1: Data on groups whose socle and radical series for PIMs differ

Group Sz(8) L2(27) Sz(8) L2(17) M11 L2(8) M11 U3(3) M11 U3(3) L3(2) U3(3) A7

Prime 2 7 5 3 11 3 2 2 3 3 2 7 2
Mult. 6 1 1 2 1 2 4 5 2 3 3 1 3
PIMs 7 2 4 2 5 2 3 3 7 8 3 3 3
DPs 7 1 1 1 4 1 1 2 6 8 2 1 2
TF 27 4 4 5 5 5 5 19 7 9 5 5 5
PSNTF T F F F F F T T T T F F T
PMDF 16 1 1 2 2 2 2 14 2 6 2 2 2
PSNDF T T T T T T T F T F T T T
PMDS 7 1 1 1 1 1 1 2 1 9 1 1 1
PSNDS F T T T T T T F T F T T T
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Table 3.2: Data on groups whose socle and radical series for PIMs differ

Group U4(2) L2(31) M12 U4(2) L2(23) L3(3) M12 L3(3) A8 L3(3) L2(32) L3(4) L2(13) Sz(8)
Prime 2 2 2 3 2 13 3 2 2 3 11 2 7 13
Mults. 6 5 6 4 3 1 3 4 6 3 1 6 1 1
PIMs 7 3 3 5 3 3 8 3 7 8 2 5 2 4
DPs 7 2 3 3 2 1 8 2 7 8 1 5 1 1
TF 13 17 10 13 5 5 9 5 13 9 6 13 4 5
PSNTF T F T F F F T T T T F T F T
PMDF 10 14 5 10 2 2 6 2 10 6 3 8 1 2
PSNDF F T T T T T T T T F T T T T
PMDS 25 1 6 24 1 1 12 1 19 9 1 24 1 1
PSNDS F T F F T T F T F F T F T T

Table acronyms

• Group: is the simple group used.

• Prime: is the characteristic of the basic algebra.

• Mult.: is the multiplicity of the prime in the factorization of the group order.

• PIMs: is the number of PIMs in the block B of the basic algebra.

• DPs : is the number of PIMs with different socle and radical series.

• TF: is the maximum number of factors in the socle series for all PIMs.

• PSNTF: is whether all PIMs have the same number of factors in the socle series.

• PMDF: is the maximum number of differing factors between the socle and radical series

among all PIMs.

• PSNDF: is whether all differing PIMs differ by the same number of factors.

• PMDS: is the maximum number of differing simple modules between factors of the socle

and radical series among all PIMs.

• PSNDS: is whether all differing factors differ by the same number of simple modules.

Observations

1. The prime 2 occurs most frequently in both tables. Is this a coincidence with this or

something more happening in these cases? Also for the case p = 2, it does not seem like

the socle and radical series are close to each other, that is the bounds on ”how far off”

they are should not be very good.

2. There are cases where the all of PIMs have differing socle and radical series. This seems

to be related to having more differing factors and differing simples in those factors.



Section 3. Question on the Equality of the Socle and Radical Series 20

3. For many of the group algebras the number of differing factors is small compared with the

total number of factors. Perhaps this should be the way of stating exactly what is meant

by ”how far off” the socle and radical series are from each other.

4. Also for many of the group algebras the number of differing simples is small. This should

also be incorporated with defining what is meant by ”how far off” the socle and radical

series for a PIM are from each other. In particular the case p | |G| exactly once seems to

be a nice case. Can we say more exactly what ”nice” means?

5. The groups that jump off as having drastically different socle and radical series are the

following:

Sz(8)p2, U3(3)p2, U4(2)p2, M12p2, U4(2)p3, M12p3, A8p2, L3(3)p3, L3(4)p2

Note that all but two are in characteristic 2. Does this still happen as we look at simple

groups of larger and larger order?

3.6 Further Questions

There is still quite a bit of work to be done before some solid theoretical conjectures about

the structure of the socle and radical series of projective indecomposable modules of simple

groups can be made. However, this collection of data collected brings out some interesting

questions that can now be further explored. Are there properties of the simple groups and field

characteristics which cause the socle and radical series to be equal or differing? Right now I’m

measuring ”how far off” the socle series is from the radical series by looking at the differing

factors and differing simple modules in those factors, but this should be made more rigorous and

clear as to what is meant by a bound on how different these series can be. The case when p | |G|
exactly once seems very close to having equality of the series, can an exact bound be stated

for the number of differing factors and the number of differing simple modules in those factors?

What about the case when p | |G| exactly twice or exactly n times? Is there a relation with the

multiplicity of the prime dividing the group order and how different the series are? Also looking

at the collection of PIMs as a whole, can statements similar to Landrock’s theorem [4] be stated

with perhaps weaker assumptions? Can anything be said when soci(P ) = radl(P )−i(P ) and

radi(P ) = socl(P )−i(P )? Looking at the collection of PIMs with differing series when can we

say they all have the same Loewy length or behave in the same way (that is same number of

differing factors and same number of differing simple modules in those factors)? These are just

a few of the questions yet to be throughly looked into more throughly. At present generating

more data from different group algebras will be most helpful and hopefully in future work some

of these questions can be answered.



Appendix A

Source Code

File GAPssrsCheck

# Gap code for checking the socle and radical series of a PIM of a group.

# Identify for which groups the socle and radical series coincide

# and for the ones that don’t find the factors in the socle and radical

# that differ and by what simple modules they differ by.

Read("modatlasgroups"); # List of Simple Groups from the Altas Book.

# L2(25) is not in GAP fo some reason so need to remove it from the

# list modatlasgroups.

Remove(modatlasgroupsstring, 13);

g := "A5";;

alg := InitializeRecordAtlasGroup(g, 2,1);;

AutoCalcBasic(alg);;

module := alg.PIMs[1].PIM;;

# Initialize db using the first simple module in alg.global_simples

db := Chop(alg.global_simples[1]).db;;

# Look over the rest of the simple modules in alg.global_simples

# always updating the db calculated so far.

21
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for m in [2..Length(alg.global_simples)] do

db := Chop(alg.global_simples[m], rec(db:=db)).db;

od;

soc := SocleSeries(module, db);;

rad := RadicalSeries(module, db);;

list :=[]; # List for record of group.

listPIMs :=[]; # List of PIMs for group in specific characteristic.

mats :=[]; # Matrix for the socle series, keeping track of

# simple modules in each factor of the socle series.

matr :=[]; # Matrix for the radical series, keeping track of

# simple modules in each factor of the radical series.

i:=1; j:=1; k:=1; n:=1; p:=1; q:=1;

# Record for each PIM of a group in a specific characteristic, keeps record

# of the PIM, the matrix for it’s socle series and radical series, and true

# if the socle and radical series are equal (otherwise false).

a := rec( socleSeries := mats, radicalSeries := matr, srEqual := true);

# Record for each group in a specific characteristic, keeps record of the

# group, characteristic, list containing records are each PIM, and true if

# all socle and radical series are equal (otherwise false).

b := rec(groupName := "A5", characteristic := 2, PIMs := listPIMs,

srAllEqual := true);

equal := true;

flag := true;

##################################################################################
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##################################################################################

Socle Radical Equality Check for Simple Groups

Input - String name of simple group and a characteristic that divides the order

of the group.

Output - List of record for group, containing group, characteristic, record

for each PIM of the group, and true if all PIMs of the group have equal

radical and socle series (false otherwise). Records for PIMs contain

matrices for socle and radical series of PIM, and true if the radical

and socle series are equal (false otherwise).

##################################################################################

##################################################################################

srCheck := function(group, char)

equal:= true; flag:= true;

list:=[]; listPIMs:=[];

alg := InitializeRecordAtlasGroup(group, char, 1);

AutoCalcBasic(alg);

# get each PIM, with same db of simple modules across the board

for n in [1..Length(alg.PIMs)] do

module := alg.PIMs[n].PIM;

db := Chop(alg.global_simples[1]).db;

for m in [2..Length(alg.global_simples)] do

db := Chop(alg.global_simples[m], rec(db := db)).db;

od;

# Create the Socle and Radical series for each PIM

soc := SocleSeries(module, db);

rad := RadicalSeries(module, db);
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# Use matrices to keep track of the simples in each factor of the

# socle and radical series to compare.

# If the matrices are equal then the Socle and Radical series

# are the same, if not we can read off from the matrices by what

# factors they differ by in terms of simple modules.

mats := NullMat(Length(soc.isotypes), Length(alg.PIMs));

matr := NullMat(Length(rad.isotypes), Length(alg.PIMs));

# Create the socle series matrix which shows which simple modules

# are in each factor of the socle series.

for i in [1..Length(soc.isotypes)] do

for k in [1..Length(soc.isotypes[i])] do

for j in [i..Length(mats)] do

mats[j][soc.isotypes[i][k]] :=

mats[j][soc.isotypes[i][k]]+1;

od;od;od;

# Create the radical series matrix which shows which simple modules

# are in each factor of the radical series. Start at the end of the

# radical series for easy comparision with the socle series.

for i in [1..Length(rad.isotypes)] do

for k in [1..Length(rad.isotypes[Length(rad.isotypes)-i+1])] do

for j in [i..Length(matr)] do

matr[j][rad.isotypes[Length(rad.isotypes)-i+1][k]] :=

matr[j][rad.isotypes[Length(rad.isotypes)-i+1][k]]+1;

od;od;od;

# Check if the socle and radical series for PIM are equal.

if mats = matr then equal := true;

else equal := false;

flag := false;

fi;

# Create PIM record and add to listPIMs.

a:= rec(socleSeries := mats, radicalSeries := matr, srEqual := equal);
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listPIMs[n] := a;

od;

# Create group record with listPIMs and add to list

b := rec(groupName := group, characteristic := char, PIMs := listPIMs,

srAllEqual := flag);

Add(list, b);

end;

##################################################################################

End of Function srCheck

##################################################################################
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File ReadSRseries

LoadPackage("basic");

Read("GAPssrsCheck"); # Code for Socle Radical Equality Check for simple groups

b := rec();

##################################################################################

##################################################################################

Socle Radical Equality Check for Algebra

Input - Group Algebra result of AutoCalcBasic and a characteristic that

divides the order of the group.

Output - List of record for group, containing group, characteristic, record

for each PIM of the group, and true if all PIMs of the group have

equal radical and socle series (false otherwise). Records for PIMs

contain matrices for socle and radical series of PIM, and true if

the radical and socle series are equal (false otherwise).

##################################################################################

##################################################################################

srCheckAlg := function(alg)

equal := true; flag := true;

list :=[];

listPIMs :=[];

# Get each PIM, with same db of simple modules across the board.

for n in [1..Length(alg.PIMs)] do

module := alg.PIMs[n].PIM;

db := Chop(alg.global_simples[1]).db;

for m in [2..Length(alg.global_simples)] do

db := Chop(alg.global_simples[m], rec(db := db)).db;

od;

# Create the Socle and Radical series for each PIM.
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soc := SocleSeries(module, db);

rad := RadicalSeries(module, db);

# Use matrices to keep track of the simples in each factor of the

# socle and radical series to compare.

# If the matrices are equal then the Socle and Radical series

# are the same, if not we can read off from the matrices by what

# factors they differ by in terms of simple modules from db.

mats := NullMat(Length(soc.isotypes), Length(alg.PIMs));

matr := NullMat(Length(rad.isotypes), Length(alg.PIMs));

# Create the socle series matrix which shows which simple modules

# are in each factor of the socle series.

for i in [1..Length(soc.isotypes)] do

for k in [1..Length(soc.isotypes[i])] do

for j in [i..Length(mats)] do

mats[j][soc.isotypes[i][k]] :=

mats[j][soc.isotypes[i][k]]+1;

od;od;od;

# Create the radical series matrix which shows which simple modules

# are in each factor of the radical series. Start at the end of the

# radical series for easy comparision with the socle series.

for i in [1..Length(rad.isotypes)] do

for k in [1..Length(rad.isotypes[Length(rad.isotypes)-i+1])] do

for j in [i..Length(matr)] do

matr[j][rad.isotypes[Length(rad.isotypes)-i+1][k]] :=

matr[j][rad.isotypes[Length(rad.isotypes)-i+1][k]]+1;

od;od;od;

# Checks if the socle and radical series for PIM are equal

if mats = matr then equal := true;

else equal := false;

flag := false;
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fi;

# Create PIM record and add to listPIMs.

a := rec(socleSeries := mats, radicalSeries := matr, srEqual := equal);

listPIMs[n] := a;

od;

# Create group record with listPIMs and add to list.

b := rec(groupName := alg.group, characteristic := alg.prime,

PIMs := listPIMs, srAllEqual := flag);

Add(list, b);

end;

##################################################################################

End of Function srCheckAlg

##################################################################################
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File landrockCrit

pims :=[];

truth := true; truth2 := true;

loewyLength :=[]; n:=0;

##################################################################################

##################################################################################

Checking Theorem 1 Criterion from Landrock’s Paper

Input - List outputed by the functions srCheck or srCheckAlg.

Output - Returns true if all PIMs are upper (lower) stable implies all PIMs

have the same Loewy Length.

##################################################################################

##################################################################################

landrockCrit := function(list)

pims := list[1].PIMs;

truth := true;

loewyLength :=[];

for i in [1..Length(pims)] do

# Check if each PIM is upper stable

if pims[i].radicalSeries[1] = pims[i].socleSeries[1] then;

else truth := false; fi;

od;

if truth = false then truth := true;

for i in [i..Length(pims)] do

# Check if each PIM is lower stable

if pims[i].radicalSeries[Length(pims[i].radicalSeries)] =

pims[i].socleSeries[Length(pims[i].socleSeries)] then;

else truth := false; fi;
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od; fi;

n:= Length(pims[1].radicalSeries);

loewyLength :=[];

for i in [1..Length(pims)] do

Add(loewyLength, Length(pims[i].radicalSeries), i);

if Length(pims[i].radicalSeries) = n then;

else truth2 := false; fi;

od;

return truth2;

end;

##################################################################################

End of Function landrockCrit

##################################################################################
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