NAME:

1. Sketch the graphs by hand:

(e)
$$J(x) = \sqrt[3]{-x+2}$$

2. The graph of f is given. For each part, either sketch the graph or give the function as a transformation of f.

3. Find the inverse function:

(a) f(x) = 3x - 7

(b)
$$g(x) = \frac{2}{3x - 1}$$

(c)
$$h(x) = \frac{1}{8}(x-2)^3$$

- 4. If (-10, 5) is a point on the graph of an invertible function f, then what point must be on the graph of:
 (a) -¹/₅f(x − 3)
 - (b) f(5x+15) 2
 - (c) $f^{-1}\left(-\frac{1}{5}x\right)$
 - (d) $2f^{-1}(x-1) + 1$
- 5. Let the domain of g(x) be [-1, 2] and the range be [0, 3]. Find the domain and range of the following:
 - (a) $3f\left(\frac{1}{4}x\right)$
 - (b) f(x-3) + 1
 - (c) $\frac{1}{3}f(x+3)$
- 6. If r is an x-intercept of the graph of y = h(x), then what statement can be made about an x-intercept of the graph of each function?
 - (a) y = -h(x)
 - (b) y = h(-x)
 - (c) y = -h(-x)