Answers to Worksheet 11 - Related Rates

t = time

1)
$$V = \text{volume of sphere} \quad r = \text{radius} \quad t = \text{time}$$

Equation: $V = \frac{4}{3}\pi r^3$ Given rate: $\frac{dV}{dt} = -\frac{256\pi}{3}$ Find: $\frac{dr}{dt}\Big|_{r=3}$
 $\frac{dr}{dt}\Big|_{r=3} = \frac{1}{4\pi r^2} \cdot \frac{dV}{dt} = -\frac{64}{27}$ in/s
2) $V = \text{volume of material in cone} \quad h = \text{height} \quad t = \text{time}$
Equation: $V = \frac{\pi h^3}{3}$ Given rate: $\frac{dV}{dt} = -\frac{2\pi}{3}$ Find: $\frac{dh}{dt}\Big|_{h=5}$
 $\frac{dh}{dt}\Big|_{h=5} = \frac{1}{\pi h^2} \cdot \frac{dV}{dt} = -\frac{2}{75}$ cm/sec
3) $A = \text{area of circle} \quad r = \text{radius} \quad t = \text{time}$
Equation: $A = \pi r^2$ Given rate: $\frac{dr}{dt} = 5$ Find: $\frac{dA}{dt}\Big|_{r=8}$
 $\frac{dA}{dt}\Big|_{r=8} = 2\pi r \cdot \frac{dr}{dt} = 80\pi$ m²/min
4) $a = \text{altitude of rocket} \quad \theta = \text{angle of elevation from observer to rocket} \quad t = \text{Equation: } \tan \theta = \frac{a}{500}$ Given rate: $\frac{da}{dt} = 500$ Find: $\frac{d\theta}{dt}\Big|_{a=1200}$
 $\frac{d\theta}{dt}\Big|_{a=1200} = \frac{1}{500 \cdot \sec^2 \theta} \cdot \frac{da}{dt} = \frac{25}{169}$ radians/sec
5) $x = \text{distance from person to lamppost} \quad y = \text{length of shadow} \quad t = \text{time}$
Equation: $\frac{x+y}{17} = \frac{y}{6}$ Given rate: $\frac{dx}{dt} = -\frac{3}{x}$ Find: $\frac{dy}{dt}\Big|_{x=10}$

© 2016 Kuta Software LLC. All rights reserved. 3- Made with Infinite Calculus.