## MC Packet 7 - Particle Motion and Theorems

PERIOD: \_\_\_\_

In-Class Together: Problems 1-6

- The average value of  $\cos x$  on the interval [-3,5] is
  - $(A) \cdot \frac{\sin 5 \sin 3}{8}$
  - (B)  $\frac{\sin 5 \sin 3}{2}$
  - $(C) \ \frac{\sin 3 \sin 5}{2}$
  - (D)  $\frac{\sin 3 + \sin 5}{2}$
  - $(E) \quad \frac{\sin 3 + \sin 5}{8}$

- Let f be a function that is differentiable on the open interval (1.10). If f(2) = -5, f(5) = 5, and f(9) = -5, which of the following must be true?
  - I. f has at least 2 zeros.
  - II. The graph of f has at least one horizontal tangent.
  - III. For some c, 2 < c < 5, f(c) = 3.
  - (A) None

2

- (B) I only
- (C) I and II only
- (D) I and III only
- (E) I. II, and III

- If  $f(x) = \sin\left(\frac{x}{2}\right)$ , then there exists a number c in the interval  $\frac{\pi}{2} < x < \frac{3\pi}{2}$  that satisfies the 3 conclusion of the Mean Value Theorem. Which of the following could be c?
  - (A)  $\frac{2\pi}{3}$
- (B)  $\frac{3\pi}{4}$  (C)  $\frac{5\pi}{6}$
- (D)  $\pi$  (E)  $\frac{3\pi}{2}$
- 4 A point moves in a straight line so that its distance at time t from a fixed point of the line is  $8t - 3t^2$ . What is the *total* distance covered by the point between t = 1 and t = 2?
  - (A) 1
- (B)  $\frac{4}{3}$  (C)  $\frac{5}{3}$
- (E) 5

- (5) A point moves on the x-axis in such a way that its velocity at time t (t > 0) is given by  $v = \frac{\ln t}{t}$ . At what value of t does v attain its maximum?
  - (A) 1
- (C)
- (D)  $e^{\frac{3}{2}}$

(E) There is no maximum value for v.

- 6 The acceleration  $\alpha$  of a body moving in a straight line is given in terms of time t by  $\alpha = 8 - 6t$ . If the velocity of the body is 25 at t = 1 and if s(t) is the distance of the body from the origin at time t, what is s(4) - s(2)?
  - (A) 20
- (B) 24
- (C) 28
- (D) 32
- (E) 42

Let f be a polynomial function with degree greater than 2. If  $a \neq b$  and f(a) = f(b) = 1, which of the following must be true for at least one value of x between a and b?

- $I. \qquad f(x) = 0$
- $II. \qquad f'(x) = 0$
- III. f''(x) = 0
- (A) None
- (B) I only
- (C) II only
- (D) I and II only
- (E) I, II, and III

A particle moves along the x-axis so that at any time  $t \ge 0$  its position is given by  $x(t) = t^3 - 3t^2 - 9t + 1$ . For what values of t is the particle at rest?

- (A) No values
- (B) 1 only
- (C) 3 only
- (D) 5 only
- (E) 1 and 3

What is the average value of v for the part of the curve  $v = 3x - x^2$  which is in the first quadrant?

- (A) -6
- (B) -2
- (C)  $\frac{3}{2}$
- (D)  $\frac{9}{4}$
- $(E) \quad \frac{9}{2}$

(19

The Mean Value Theorem guarantees the existence of a special point on the graph of  $y = \sqrt{x}$ between (0,0) and (4,2). What are the coordinates of this point?

- (A) (2,1)
- (B) (1,1)
- (C)  $\left(2,\sqrt{2}\right)$
- (D)  $\left(\frac{1}{2}, \frac{1}{\sqrt{2}}\right)$
- (E) None of the above

(1)

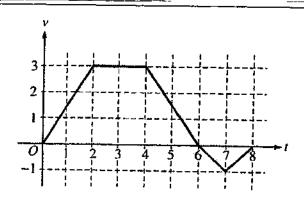
The position of a particle moving along a straight line at any time t is given by  $s(t) = t^2 + 4t + 4$ . What is the acceleration of the particle when t = 4?

- (A) = 0
- (B) 2
- (C) 4
- (D) 8
- (E) 12

(12)

A particle moves along the x-axis so that its position at time t is given by  $x(t) = t^2 - 6t + 5$ . For what value of t is the velocity of the particle zero?

- (A) 1
- (B) 2
- (C) 3
- (D) 4
- (E) 5


(13)

The average value of  $\sqrt{x}$  over the interval  $0 \le x \le 2$  is

- (A)  $\frac{1}{3}\sqrt{2}$  (B)  $\frac{1}{2}\sqrt{2}$  (C)  $\frac{2}{3}\sqrt{2}$
- (D) 1
- (E)  $\frac{4}{3}\sqrt{2}$

| x    | 0 | 1 | 2 |
|------|---|---|---|
| f(x) | 1 | k | 2 |

- (4) The function f is continuous on the closed interval [0,2] and has values that are given in the table above. The equation  $f(x) = \frac{1}{2}$  must have at least two solutions in the interval [0, 2] if k =
  - (A) = 0
- (B)  $\frac{1}{2}$  (C) 1 (D) 2
- (E) 3
- Let f be the function given by  $f(x) = x^3 3x^2$ . What are all values of c that satisfy the conclusion (5) of the Mean Value Theorem of differential calculus on the closed interval [0.3]?
  - (A) 0 only
- (B) 2 only
- (C) 3 only
- (D) 0 and 3
- The velocity of a particle moving on a line at time t is  $v = 3t^{\frac{1}{2}} + 5t^{\frac{3}{2}}$  meters per second. How many (b) meters did the particle travel from t = 0 to t = 4?
  - (A) 32
- (B) 40
- (C) 64
- (D) 80
- (E) 184
- A particle moves in a straight line with velocity  $v(t) = t^2$ . How far does the particle move between (17) times t=1 and t=2?
- (C) 3 (D) 7
- (E) 8
- If the position of a particle on the x-axis at time t is  $-5t^2$ , then the average velocity of the particle (8) for  $0 \le t \le 3$  is
  - (A) -45
- (B) -30
- (C) -15
- (D) -10
- (E) -5



A bug begins to crawl up a vertical wire at time t = 0. The velocity v of the bug at time t, (19)  $0 \le t \le 8$ , is given by the function whose graph is shown above.

At what value of t does the bug change direction?

- (A) 2
- (C) 6
- (D) 7
- (E) 8
- A particle moves along the x-axis so that at any time t its position is given by  $x(t) = te^{-2t}$ . For what **(26)** values of t is the particle at rest?
  - (A) No values

- (B) 0 only (C)  $\frac{1}{2}$  only (D) 1 only (E) 0 and  $\frac{1}{2}$
- At t = 0 a particle starts at rest and moves along a line in such a way that at time t its acceleration (21) is  $24t^2$  feet per second per second. Through how many feet does the particle move during the first 2 seconds?
  - (A) 32
- (B) 48
- (C) 64
- (D) 96
- (E) 192
- The maximum acceleration attained on the interval  $0 \le t \le 3$  by the particle whose velocity is given (2) by  $v(t) = t^3 - 3t^2 + 12t + 4$  is
  - (A) 9
- (B) 12
- (C) 14
- (D) 21
- (E) 40
- The average value of  $f(x) = x^2 \sqrt{x^3 + 1}$  on the closed interval [0,2] is (23)
  - (A)  $\frac{26}{9}$  (B)  $\frac{13}{3}$  (C)  $\frac{26}{3}$
- (D) 13
- (E) = 26