MC Packet 4 - Using f, f', and f''

PERIOD: ____

In-Class Together: Problems 1-6

- What are all values of x for which the function f defined by $f(x) = (x^2 3)e^{-x}$ is increasing?
 - (A) There are no such values of x.
 - (B) x < -1 and x > 3
 - (C) = -3 < x < 1
 - (D) -1 < x < 3
 - (E) All values of x
- At x = 0, which of the following is true of the function f defined by $f(x) = x^2 + e^{-2x}$?
 - (A) f is increasing.
 - (B) f is decreasing.
 - (C) f is discontinuous.
 - (D) f has a relative minimum.
 - (E) f has a relative maximum.

- For what value of k will $x + \frac{k}{x}$ have a relative maximum at x = -2?
 - (A) -4
- (B) -2
- (C) 2
- (D) 4
- (E) None of these

- **(4)** If $f''(x) = x(x+1)(x-2)^2$, then the graph of f has inflection points when x =
 - (A) -1 only (B) 2 only
- (C) -1 and 0 only
- (D) -1 and 2 only (E) -1, 0, and 2 only
- **(5)** Let f be a function that is continuous on the closed interval [-2,3] such that f'(0) does not exist. f'(2) = 0, and f''(x) < 0 for all x except x = 0. Which of the following could be the graph of f?

The graph of the derivative of f is shown in the figure above. Which of the following could be the 6 graph of f?

(B)

(C)

(D)

(E)

- The graph of y = f(x) on the closed interval [2,7] is shown above. How many points of inflection does this graph have on this interval?
 - (A) One
- (B) Two
- (C) Three
- (D) Four
- (E) Five

- The graph of $y = 3x^4 16x^3 + 24x^2 + 48$ is concave down for
 - (A) x < 0
 - (B) x > 0
 - (C) x < -2 or $x > -\frac{2}{3}$
 - (D) $x < \frac{2}{3}$ or x > 2
 - (E) $\frac{2}{3} < x < 2$
- If y = 2x 8, what is the minimum value of the product xy?
 - (A) -16
- (B) -8
- (C) -4
- (D) 0
- (E) 2

- The graph of $y = 5x^4 x^5$ has a point of inflection at
 - (A) (0.0) only

- (B) (3.162) only
- (C) (4,256) only

- (D) (0.0) and (3.162)
- (E) (0,0) and (4,256)

- The graph of y = f(x) is shown in the figure above. On which of the following intervals are $\frac{dy}{dx} > 0$ and $\frac{d^2y}{dx^2} < 0$?
 - I. a < x < b
 - II. b < x < c
 - III. c < x < d
 - (A) I only
- (B) II only
- (C) III only
- (D) I and II
- (E) II and III
- The function f is given by $f(x) = x^4 + x^2 2$. On which of the following intervals is f increasing?
 - (A) $\left(-\frac{1}{\sqrt{2}}, \infty\right)$
 - (B) $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
 - $(C) = (0, \infty)$
 - (D) $(-\infty,0)$
 - (E) $\left(-\infty, -\frac{1}{\sqrt{2}}\right)$
- The derivative of $f(x) = \frac{x^4}{3} \frac{x^5}{5}$ attains its maximum value at $x = \frac{x^4}{3} \frac{x^5}{5}$
 - (A) -I
- (B) 0
- (C) 1
- $(D) = \frac{4}{3}$
- (E) $\frac{5}{3}$
- At what values of x does $f(x) = 3x^5 5x^3 + 15$ have a relative maximum?
 - (A) -l only
- (B) 0 only
- (C) 1 only
- (D) -1 and 1 only
- (E) -1, 0 and 1

6 The graph of f is shown in the figure above. Which of the following could be the graph of the derivative of f?

(A)

(B)

(D)

(E)

- Let f be a function defined for all real numbers x. If $f'(x) = \frac{\left|4-x^2\right|}{x-2}$, then f is decreasing on the interval **(b)** interval
- (A) $(-\infty,2)$ (B) $(-\infty,\infty)$ (C) (-2,4) (D) $(-2,\infty)$ (E) $(2,\infty)$

(17)

At what value of x does the graph of $y = \frac{1}{x^2} - \frac{1}{x^3}$ have a point of inflection?

- (A) = 0
- (B) I
- (C) 2
- (D) 3
- (E) At no value of x

B

The absolute maximum value of $f(x) = x^3 - 3x^2 + 12$ on the closed interval [-2, 4] occurs at x =

- (A) 4
- (B) 2
- (C) 1
- (D) = 0
- (E) -2

The graph of a twice-differentiable function f is shown in the figure above. Which of the following is true?

- (A) f(1) < f'(1) < f''(1)
- (B) f(1) < f''(1) < f'(1)
- (C) f'(1) < f(1) < f''(1)
- (D) f''(1) < f(1) < f'(1)
- (E) f''(1) < f'(1) < f(1)

②

The function f is defined on the closed interval [0,8]. The graph of its derivative f' is shown above. How many points of inflection does the graph of f have?

- (A) Two
- (B) Three
- (C) Four
- (D) Five
- (E) Six

- The graphs of the derivatives of the functions f, g, and h are shown above. Which of the functions f, g, or h have a relative maximum on the open interval a < x < b?
 - (A) f only
 - (B) g only
 - (C) h only
 - (D) f and g only
 - (E) f, g, and h
- If y is a function of x such that y' > 0 for all x and y'' < 0 for all x, which of the following could be part of the graph of y = f(x)?

- If $f(x) = \frac{\ln x}{x}$, for all x > 0, which of the following is true?
 - (A) f is increasing for all x greater than 0.
 - (B) f is increasing for all x greater than 1.
 - (C) f is decreasing for all x between 0 and 1.
 - (D) f is decreasing for all x between 1 and e.
 - (E) f is decreasing for all x greater than e.

(24)

The graph of y = h(x) is shown above. Which of the following could be the graph of y = h'(x)?

(E)

(B)

(D)

(5)

If g is a differentiable function such that g(x) < 0 for all real numbers x and if $f'(x) = (x^2 - 4)g(x)$, which of the following is true?

- (A) f has a relative maximum at x = -2 and a relative minimum at x = 2.
- (B) f has a relative minimum at x = -2 and a relative maximum at x = 2.
- (C) f has relative minima at x = -2 and at x = 2.
- (D) f has relative maxima at x = -2 and at x = 2.
- (E) It cannot be determined if f has any relative extrema.

W

How many critical points does the function $f(x) = (x+2)^5 (x-3)^4$ have?

- (A) One
- (B) Two
- (C) Three
- (D) Five
- (E) Nine

21)

The graph of $y = \frac{-5}{x-2}$ is concave downward for all values of x such that

- $(A) \quad x < 0$
- (B) x < 2
- $(\mathbf{C}) = x < 5$
- 0 < x (**Q**)
- (E) x > 2

(28)

What is the minimum value of $f(x) = x \ln x$?

- (A) = -e
- (B) -1 (C) $-\frac{1}{e}$
- (D) 0
- (E) f(x) has no minimum value.