Worksheet 9 - Approximating Area Under the Curve

Period

For each problem, approximate the area under the curve over the given interval using 4 left endpoint rectangles. You may use the provided graph to sketch the curve and rectangles.

1)
$$r = -\frac{4}{t}$$
; [-6, -2]

2)
$$y = -\frac{s^2}{2} + 6$$
; [-2, 2]

For each problem, approximate the area under the curve over the given interval using 4 right endpoint rectangles. You may use the provided graph to sketch the curve and rectangles.

3)
$$s = x + 5$$
; [1, 5]

4)
$$h = r^2 - 2r + 2$$
; [0, 4]

For each problem, approximate the area under the curve over the given interval using 4 inscribed rectangles. You may use the provided graph to sketch the curve and rectangles.

5)
$$y = -s^2 + 11$$
; [-1, 3]

6)
$$r = \frac{2}{s}$$
; [1, 3]

For each problem, approximate the area under the curve over the given interval using 5 circumscribed rectangles. You may use the provided graph to sketch the curve and rectangles.

7)
$$h = \frac{s^2}{2} + s + 1$$
; [-4, 1]

8)
$$y = \frac{5}{t}$$
; [1, 6]

For each problem, approximate the area under the curve over the given interval using 4 midpoint rectangles. You may use the provided graph to sketch the curve and rectangles.

9)
$$y = -s + 6$$
; [-4, 4]

10)
$$g = -r^2 - 2r + 9$$
; [-3, 1]

Evaluate each indefinite integral.

$$11) \int 20\sin -5x \cdot \cos^5 -5x \, dx$$

$$12) \int 27t^2 (3t^3 - 5)^3 dt$$

13)
$$\int (e^{4x} + 2)^4 \cdot 20e^{4x} \, dx$$

14)
$$\int \frac{4(-2 + \ln 3r)^4}{r} \, dr$$

For each problem, use a left-hand Riemann sum to approximate the integral based off of the values in the table.

For each problem, use a right-hand Riemann sum to approximate the integral based off of the values in the table.