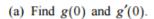
Name:		
INAME.		

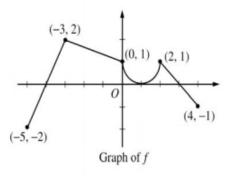
FRQ Packet #1 - Inflection and Critical Points

2010 AP Calculus AB FRQ (Form B) Question 2

Calculator - In Class


The function g is defined for x > 0 with g(1) = 2, $g'(x) = \sin\left(x + \frac{1}{x}\right)$, and $g''(x) = \left(1 - \frac{1}{x^2}\right)\cos\left(x + \frac{1}{x}\right)$.

- (a) Find all values of x in the interval $0.12 \le x \le 1$ at which the graph of g has a horizontal tangent line.
- (b) On what subintervals of (0.12, 1), if any, is the graph of g concave down? Justify your answer.
- (c) Write an equation for the line tangent to the graph of g at x = 0.3.
- (d) Does the line tangent to the graph of g at x = 0.3 lie above or below the graph of g for 0.3 < x < 1? Why?


2004 AP Calculus AB FRQ (Form A) Question 4

No Calculator - In Class

The graph of the function f shown above consists of a semicircle and three line segments. Let g be the function given by $g(x) = \int_{-3}^{x} f(t) dt$.

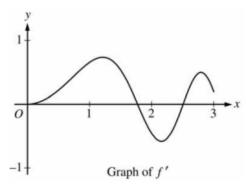
- (b) Find all values of x in the open interval (-5, 4) at which g attains a relative maximum. Justify your answer.
- (c) Find the absolute minimum value of g on the closed interval [-5, 4]. Justify your answer.
- (d) Find all values of x in the open interval (-5, 4) at which the graph of g has a point of inflection.

2005 AP Calculus AB FRQ (Form A) Question 4

No Calculator - HW Not Timed

x	0	0 < x < 1	1	1 < x < 2	2	2 < x < 3	3	3 < x < 4
f(x)	-1	Negative	0	Positive	2	Positive	0	Negative
f'(x)	4	Positive	0	Positive	DNE	Negative	-3	Negative
f''(x)	-2	Negative	0	Positive	DNE	Negative	0	Positive

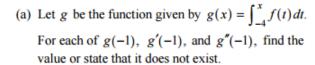
Let f be a function that is continuous on the interval [0, 4). The function f is twice differentiable except at x = 2. The function f and its derivatives have the properties indicated in the table above, where DNE indicates that the derivatives of f do not exist at x = 2.

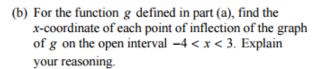

- (a) For 0 < x < 4, find all values of x at which f has a relative extremum. Determine whether f has a relative maximum or a relative minimum at each of these values. Justify your answer.</p>
- (b) On the axes provided, sketch the graph of a function that has all the characteristics of f. (Note: Use the axes provided in the pink test booklet.)
- (c) Let g be the function defined by $g(x) = \int_{1}^{x} f(t) dt$ on the open interval (0, 4). For 0 < x < 4, find all values of x at which g has a relative extremum. Determine whether g has a relative maximum or a relative minimum at each of these values. Justify your answer.
- (d) For the function g defined in part (c), find all values of x, for 0 < x < 4, at which the graph of g has a point of inflection. Justify your answer.</p>

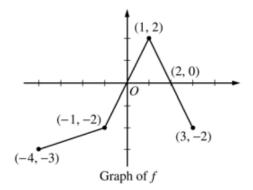
2006 AP Calculus AB FRQ (Form B) Question 2

Calculator - HW Timed 15 minutes

Let f be the function defined for $x \ge 0$ with f(0) = 5 and f', the first derivative of f, given by $f'(x) = e^{(-x/4)} \sin(x^2)$. The graph of y = f'(x) is shown above.


- (a) Use the graph of f' to determine whether the graph of f is concave up, concave down, or neither on the interval 1.7 < x < 1.9. Explain your reasoning.
- (b) On the interval $0 \le x \le 3$, find the value of x at which f has an absolute maximum. Justify your answer.
- (c) Write an equation for the line tangent to the graph of f at x = 2.




2005 AP Calculus AB FRQ (Form B) Question 4

No Calculator - HW Timed 15 minutes

The graph of the function f above consists of three line segments.

- (c) Let h be the function given by $h(x) = \int_{x}^{3} f(t) dt$. Find all values of x in the closed interval $-4 \le x \le 3$ for which h(x) = 0.
- (d) For the function h defined in part (c), find all intervals on which h is decreasing. Explain your reasoning.