Sample Homework

YOUR NAME HERE May 17, 2016

Math Review

1. First to use the math environment to insert and equation or formula use the single or double dollar signs about the expression like so: $3x + 5x^2 = 8$ or

$$3x + 5x^2 = 8.$$

To create an equation on multiple lines use the 'align' environment:

$$4(x+3) - 3(-x-2) = 4x + 12 - 3(-x) - 3(-2)$$
 [By Distributive Law]
= $4x + 12 + 3x + 6$ [By Associative Law]
= $7x + 18$ [By commutative Law]

2. Here are some basic math commands in the .tex file and their outputs in the .pdf file: For fractions:

$$\frac{1}{2} \cdot \frac{1+x+x^2}{x^3+x+4}$$

For summation and product notation:

$$\sum_{i=0}^{n+1} (i^2 + 2) \text{ and } \prod_{i=0}^{n-1} i + 3 \text{ and } \left(\sum_{i=-n}^n i^2\right)$$

For square roots: $\sqrt{2}$, $\sqrt{10 - x^2}$, n^{th} roots: $\sqrt[n]{1 + x + x^2}$

For logarithms and exponents: $\log_3(x^4)$, $4^{\log_4 x}$

Inequalities: $x \ge 0$ and $x \le 0$

To create a list of numbers: $\dots, -1, 0, 1, 2, 3, \dots$ Sets of numbers:

$$\mathbb{R}, \quad \mathbb{Z}^+, \quad \mathbb{Q}_{\geq 0}, \quad \{0, 1, 2, 3\}, \quad \{x \in \mathbb{Z} \mid x \ge 0\} = \mathbb{Z}_{\geq 0}$$

Basic set operators: $A \cap B$, $A \cup B$, A - B, $\overline{A} = U - A$, $A \subseteq B$, $A \supset B$

Power set: $\mathcal{P}(\emptyset) = \{\emptyset, \{\emptyset\}\}$

Boxing your solutions:

$$x^2 + y^2 = z^2$$

Section 1.1 - Logic

Some logic symbols:

- AND: \wedge
- OR (inclusive): \lor
- XOR (exclusive): \oplus
- Negation: \neg
- Equivalence: \equiv
- Implication: $\leftarrow, \rightarrow, \Rightarrow$

Section 1.7 - Proofs

1. Prove that if $x \in \mathbb{Z}$ is even, then $x^2 + 1$ is odd.

Proof. (Direct):

Let $x \in \mathbb{Z}$ and suppose that x is even. Then by definition x = 2k for some $k \in \mathbb{Z}$. Next consider $x^2 + 1$.

$$x^{2} + 1 = (2k)^{2} + 1$$
$$= 4k^{2} + 1$$
$$= 2(2k^{2}) + 1$$

Since $n = 2k^2 \in \mathbb{Z}$ we have that $x^2 + 1 = 2n + 1$ for $n \in \mathbb{Z}$ and hence by definition $x^2 + 1$ is add. \Box

2. Prove or disprove: the subtraction of two irrational numbers is irrational.

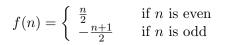
Disproof. (Counterexample):

Consider $\sqrt{2}$ which is irrational. However

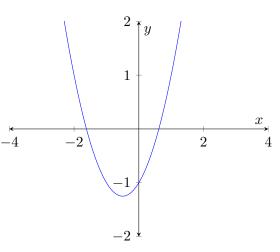
$$\sqrt{2} - \sqrt{2} = 0$$

and as $0 \in \mathbb{Q}$ this contradicts the statement above, hence it is false.

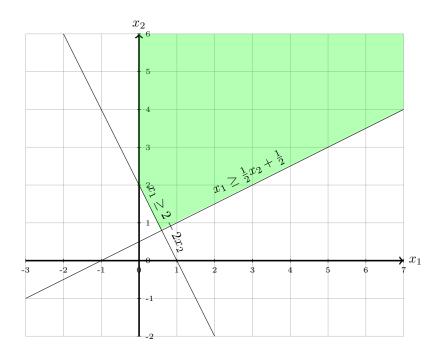
- Biimplication: \leftrightarrow or \Leftrightarrow
- $\bullet\,$ True and False: ${\bf T}$ and ${\bf F}$
- Universal Quantification: \forall
- Existential Quantification: \exists
- Therefore: ...


Section 2.3 - Functions

Floor function: $\lfloor x \rfloor$


Ceiling function: $\lceil x \rceil$

Functions composition: $f\circ g:\mathbb{Z}\to\mathbb{Z}$


Piecewise Functions:

Graphing:

Figure : Graph of $f(x) = x^2 + x - 1$

Section 2.6 - Matrices

For each part of this problem below, consider the matrices:

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \quad B = \begin{bmatrix} 3 & 4 & -1 \\ -5 & 7 & 0 \end{bmatrix} \quad C = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

(a) Compute A + C.

$$A + C = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ 0 & 2 \end{bmatrix}$$

(b) Compute $A \cdot B$.

$$A \cdot B = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 3 & 4 & -1 \\ -5 & 7 & 0 \end{bmatrix} = \begin{bmatrix} -7 & 18 & -1 \\ -5 & 7 & 0 \end{bmatrix}$$

(c) Compute C^2 .

$$C^{2} = \begin{bmatrix} -1 & 0\\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} -1 & 0\\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}$$

(d) Compute $I_3 \odot I_3 \odot I_3$.

$$I_3 \odot I_3 \odot I_3 = I_3 \odot I_3 = I_3$$

A general $m \times n$ matrix:

$$A_{m,n} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix}$$

Section 3.1 - Algorithms

• To write code in LaTeX that looks like actual code use verbatim:

```
for i in range(1, 5):
    print i
else:
    print "The for loop is over"
```

• To write an algorithm in pseudo code use the algorithm 2e package, which is already in the preamble,

```
Data: this text

Result: how to write algorithm with LATEX2e

initialization;

while not at end of this document do

read current;

if understand then

go to next section;

current section becomes this one;

else

go back to the beginning of current section;

end

end
```

Algorithm 1: How to write algorithms

• Here is another example:

```
1 PrintAll(node v):

2 for each (item in v as x in order) {

3 if x == is a key

4 print x

5 else PrintAll(x)

6 };
```

Section 6.4 - Counting

Permutations:

$$P(n,r) = \frac{n!}{(n-r)!} = \binom{n}{r} \cdot r!$$


Combinations:

$$C(n,r) = \frac{n!}{r!(n-r)!} = \binom{n}{r}$$

Section 9.1 - Relations

Comparable: \succeq, \preceq

Here are some graph representations of relations, the first one is the kind we'll use in this course whereas the second you may see in Discrete Structures or Algorithms. I just included it to give you more options.

Figure 1: Relation of the set $\{1, 2, 3, 4\}$

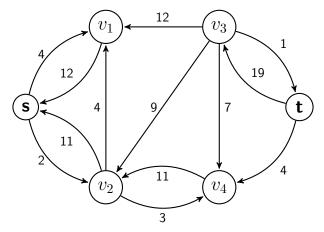


Figure 2: Network Flow

Greek Letters

- alpha: $A,\,\alpha$
- beta: $B,\,\beta$
- gamma: $\Gamma,\,\gamma$
- delta: $\Delta, \, \delta$
- epsilon: E, ϵ
- theta: $\Theta,\,\theta$

Calculus

1. Limits:

- Lambda: $\Lambda,\,\lambda$
- mu: $M,\,\mu$
- sigma: Σ , σ
- phi: $\Phi,\,\phi$
- psi: Ψ, ψ
- omega: $\Omega,\,\omega$
- $\lim_{x \to 0^+} \frac{\sin x}{x} = 1 \quad \text{and} \quad \lim_{x \to 0^-} \frac{\sin x}{x} = 1 \quad \text{thus} \quad \lim_{x \to 0} \frac{\sin x}{x} = 1$
- 2. Derivative Notation:

$$y' = f'(x) = \frac{df}{dx} = \frac{dy}{dx} = \frac{d}{dx}f(x)$$
$$y'' = f''(x) = \frac{d^2f}{dx^2} = \frac{d^2y}{dx^2} = \frac{d^2}{dx^2}f(x)$$

3. Integrals:

$$\int \cos x \, dx = \sin x + C$$
$$\int_0^2 x \, dx = 2$$

- 4. Symbols:
 - Partial: ∂
 - Delta: Δ