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Math Review

1. First to use the math environment to insert and equation or formula use the single or double dollar
signs about the expression like so: 3x+ 5x2 = 8 or

3x+ 5x2 = 8.

To create an equation on multiple lines use the ‘align’ environment:

4(x+ 3)− 3(−x− 2) = 4x+ 12− 3(−x)− 3(−2) [By Distributive Law]

= 4x+ 12 + 3x+ 6 [By Associative Law]

= 7x+ 18 [By commutative Law]

2. Here are some basic math commands in the .tex file and their outputs in the .pdf file:

For fractions:
1

2
· 1 + x+ x2

x3 + x+ 4

For summation and product notation:

n+1∑
i=0

(i2 + 2) and

n−1∏
i=0

i+ 3 and

(
n∑

i=−n
i2

)

For square roots:
√

2,
√

10− x2, nth roots: n
√

1 + x+ x2

For logarithms and exponents: log3(x
4), 4log4 x

Inequalities: x ≥ 0 and x ≤ 0

To create a list of numbers: . . . , −1, 0, 1, 2, 3, . . .

Sets of numbers:
R, Z+, Q≥0, {0, 1, 2, 3}, {x ∈ Z | x ≥ 0} = Z≥0

Basic set operators: A ∩B, A ∪B, A−B, A = U −A, A ⊆ B, A ⊃ B

Power set: P(∅) = {∅, {∅}}

Boxing your solutions:

x2 + y2 = z2

Section 1.1 - Logic

Some logic symbols:
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• AND: ∧

• OR (inclusive): ∨

• XOR (exclusive): ⊕

• Negation: ¬

• Equivalence: ≡

• Implication: ←, →, ⇒

• Biimplication: ↔ or ⇔

• True and False: T and F

• Universal Quantification: ∀

• Existential Quantification: ∃

• Therefore: ∴

Section 1.7 - Proofs

1. Prove that if x ∈ Z is even, then x2 + 1 is odd.

Proof. (Direct):

Let x ∈ Z and suppose that x is even. Then by definition x = 2k for some k ∈ Z. Next consider
x2 + 1.

x2 + 1 = (2k)2 + 1

= 4k2 + 1

= 2(2k2) + 1

Since n = 2k2 ∈ Z we have that x2 + 1 = 2n+ 1 for n ∈ Z and hence by definition x2 + 1 is add.

2. Prove or disprove: the subtraction of two irrational numbers is irrational.

Disproof. (Counterexample):

Consider
√

2 which is irrational. However

√
2−
√

2 = 0

and as 0 ∈ Q this contradicts the statement above, hence it is false.
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Section 2.3 - Functions

Floor function: bxc

Ceiling function: dxe

Functions composition: f ◦ g : Z→ Z

Piecewise Functions:

f(n) =

{
n
2 if n is even
−n+1

2 if n is odd

Graphing:

−4 −2 2 4

−2

−1

1

2

y = x2 − x− 1
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y

Figure : Graph of f(x) = x2 + x− 1
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Section 2.6 - Matrices

For each part of this problem below, consider the matrices:

A =

[
1 2
0 1

]
B =

[
3 4 −1
−5 7 0

]
C =

[
−1 0
0 1

]
(a) Compute A+ C.

A+ C =

[
1 2
0 1

]
+

[
−1 0
0 1

]
=

[
0 2
0 2

]
(b) Compute A ·B.

A ·B =

[
1 2
0 1

]
·
[

3 4 −1
−5 7 0

]
=

[
−7 18 −1
−5 7 0

]
(c) Compute C2.

C2 =

[
−1 0
0 1

]
·
[
−1 0
0 1

]
=

[
1 0
0 1

]
(d) Compute I3 � I3 � I3.

I3 � I3 � I3 = I3 � I3 = I3

A general m× n matrix:

Am,n =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

am,1 am,2 · · · am,n


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Section 3.1 - Algorithms

• To write code in LaTeX that looks like actual code use verbatim:

for i in range(1, 5):

print i

else:

print "The for loop is over"

• To write an algorithm in pseudo code use the algorithm 2e package, which is already in the preamble,

Data: this text
Result: how to write algorithm with LATEX2e
initialization;
while not at end of this document do

read current;
if understand then

go to next section;
current section becomes this one;

else
go back to the beginning of current section;

end

end
Algorithm 1: How to write algorithms

• Here is another example:

1 PrintAll( node v ):
2 for each (item in v as x in order) {
3 if x == is a key
4 print x
5 else PrintAll(x)
6 };

Section 6.4 - Counting

Permutations:

P (n, r) =
n!

(n− r)!
=

(
n

r

)
· r!

Combinations:

C(n, r) =
n!

r!(n− r)!
=

(
n

r

)
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Section 9.1 - Relations

Comparable: �, �

Here are some graph representations of relations, the first one is the kind we’ll use in this course whereas
the second you may see in Discrete Structures or Algorithms. I just included it to give you more options.
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Figure 1: Relation of the set {1, 2, 3, 4}
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Figure 2: Network Flow
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Greek Letters

• alpha: A, α

• beta: B, β

• gamma: Γ, γ

• delta: ∆, δ

• epsilon: E, ε

• theta: Θ, θ

• Lambda: Λ, λ

• mu: M , µ

• sigma: Σ, σ

• phi: Φ, φ

• psi: Ψ, ψ

• omega: Ω, ω

Calculus

1. Limits:

lim
x→0+

sinx

x
= 1 and lim

x→0−

sinx

x
= 1 thus lim

x→0

sinx

x
= 1

2. Derivative Notation:

y′ = f ′(x) =
df

dx
=
dy

dx
=

d

dx
f(x)

y′′ = f ′′(x) =
d2f

dx2
=
d2y

dx2
=

d2

dx2
f(x)

3. Integrals: ∫
cosx dx = sinx+ C∫ 2

0
x dx = 2

4. Symbols:

• Partial: ∂

• Delta: ∆
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